Supporting Information

A series of counter cation dependent tetra β-diketonate mononuclear lanthanide(III) single-molecule magnets and immobilization on pre-functionalised GaN substrates by anion exchange reaction

Zhuo-Wu,^a Yong-Mei Tian,^a Peng Chen,^a Wen-Bin Sun^{a,*}, Bing-Wu Wang,^b and Song Gao^b

a. Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.

b. Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China

E-mail: wenbinsun@126.com

Table S1-S6. Selected bond bengths (Å) and Angles (°) for 1-5	

Table S1 Complex 1Tb			
Tb1-01	2.375(6)	Tb1-O5	2.345(6)
Tb1-O2	2.346(5)	Tb1-O6	2.348(5)
Tb1-O3	2.324(6)	Tb1-07	2.357(6)
Tb1-O4	2.341(5)	Tb1-08	2.352(5)
O2-Tb1-O1	70.0(2)	O4-Tb1-O6	146.0(2)
O2-Tb1-O6	75.22(18)	O4-Tb1-O7	140.25(19)
02-Tb1-07	79.90(19)	O4-Tb1-O8	76.97(18)
02-Th1-08	144 2(2)	05-Th1-O1	74 8(2)
03-Th1-01	112 55(18)	05-Th1-02	$134\ 21(19)$
03-Th1-02	75 95(18)	05-Th1-O6	71 1(2)
03-Th1-04	71 3(2)	05-Th1-07	116 14(10)
03-Tb1-04	146 47(18)	05-Tb1-08	79 2(2)
03-Tb1-05	140.47(18)	06-Th1-01	81.06(18)
03 Tb1 07	79 2/2)	06 Th1 07	71 2/2)
03 Tb1 07	78.3(2)	06-101-07 06 Th1 09	114 12(16)
03-101-08 04 Th1 01	77.27(19)	00-101-08 07 Th1 01	14.15(10)
	73.79(18)	07-101-01	143.43(18)
04-101-02	115.49(17)		143.5(2)
04-101-05	80.4(2)	08-101-07	/1.//(19)
Table S2 Complex 1Nd			
Nd1-01	2.415(3)	Nd1-O5	2.408(3)
Nd1-O2	2.426(3)	Nd1-06	2.450(3)
Nd1-O3	2.413(3)	Nd1-07	2.410(3)
Nd1-O4	2.433(3)	Nd1-08	2.415(3)
01-Nd1-02	68.91(11)	05-Nd1-O4	77.43(11)
01-Nd1-O4	81.84(11)	05-Nd1-06	75.38(11)
01-Nd1-06	74.61(12)	05-Nd1-07	117.03(12)
O2-Nd1-O4	112.28(11)	05-Nd1-08	69.42(11)
02-Nd1-06	81.20(11)	07-Nd1-O1	132.32(11)
03-Nd1-01	116.43(12)	07-Nd1-02	76.16(12)
03-Nd1-02	72 02(12)	07-Nd1-03	80 40(12)
03-Nd1-04	69 25(11)	07-Nd1-04	142 87(13)
03-Nd1-06	143 16(11)	07-Nd1-06	68 74(11)
03-Nd1-08	80 54(12)	07-Nd1-08	76 63(11)
04-Nd1-06	146 47(11)	08-Nd1-01	146 43(11)
05-Nd1-01	80.27(11)	08-Nd1-01	1/2 07(12)
05-Nd1-01	1/5 25(11)	08-Nd1-02	143.37(12)
	143.33(11) 120.04(11)	08-Nd1-04	110.02(11)
03-Nu1-03	139.04(11)	08-1101-06	110.02(11)
Table S3 Complex 2			
Dy1-02	2.328(2)	Dy1-05	2.331(2)
Dy1-03	2.338(2)	Dy1-01	2.350(2)
Dy1-08	2.351(2)	Dy1-O4	2.370(2)
Dy1-06	2.389(2)	Dy1-07	2.368(2)
Dy2-013	2.347(2)	Dy2-012	2.354(2)
Dy2-015	2.336(2)	Dy2-011	2.346(2)
Dy2-010	2.356(2)	Dy2-O9	2.364(3)
Dy2-014	2.384(2)	Dy2-O16	2.390(2)
02-Dy1-05	131.92(8)	02-Dy1-O3	79.46(8)
05-Dy1-O3	144.76(8)	02-Dy1-01	70.43(8)
05-Dy1-01	77.08(8)	03-Dy1-01	106.02(8)
, 02-Dy1-08	75.15(9)	, 05-Dy1-08	120.91(9)
03-Dy1-08	77.64(9)	01-Dy1-08	143.85(8)
02-Dv1-07	143.20(8)	05-Dv1-07	79.70(8)
03-Dv1-07	79.10(8)	01-Dv1-07	144.82(8)
08-Dv1-07	71.27(8)	02-Dv1-04	124,64(9)
05-Dv1-04	75.75(8)	03-Dv1-04	71.86(9)
01-Dy1-04	73 49(8)	08-Dy1-04	138 21/81
07-Dy1-04	75.49(0)	02-Dy1-06	7/ 31/8)
07-D91-04 05-Dy1-06	70.02(8)	02-Dy1-06	74.51(0) 177 01/8)
03-041-00	70.02(8)	03-091-00	144.U1(ð)

01-Dy1-06	88.02(8)	08-Dy1-06	72.16(8)
07-Dy1-06	108.37(8)	O4-Dy1-O6	143.98(8)
011-Dy2-015	92.23(9)	O15-Dy2-O13	101.26(8)
O11-Dy2-O13	145.97(8)	O15-Dy2-O12	142.35(9)
O11-Dy2-O12	75.01(8)	O13-Dy2-O12	75.32(8)
O15-Dy2-O10	75.29(9)	O11-Dy2-O10	70.28(9)
013-Dy2-010	143.31(8)	O12-Dy2-O10	129.29(9)
015-Dy2-O9	146.68(8)	O11-Dy2-O9	100.90(9)
O13-Dy2-O9	84.73(8)	O12-Dy2-O9	70.96(9)
O10-Dy2-O9	80.54(8)	O15-Dy2-O14	77.10(8)
011-Dy2-014	143.33(8)	013-Dy2-014	70.61(8)
012-Dy2-014	132.70(8)	O10-Dy2-O14	73.07(8)
O9-Dy2-O14	74.11(9)	O15-Dy2-O16	70.28(9)
011-Dy2-016	74.85(8)	013-Dy2-O16	80.53(8)
012-Dy2-016	72.20(9)	O10-Dy2-O16	129.17(8)
O9-Dy2-O16	142.69(8)	014-Dy2-016	130.69(8)
Table S4 Complex 3			
Dv1-04	2.3750(18)	Dv1-02	2,3454(18)
Dv1-06	2.3044(18)	Dv1-05	2.3783(17)
Dv1-03	2.3224(19)	Dy1-07	2.3299(19)
Dy1-01	2.3579(18)	, Dy1-08	2.3709(18)
04-Dv1-05	70.92(6)	01-Dv1-O4	139.74(6)
06-Dy1-04	76.78(7)	01-Dy1-05	122.35(6)
06-Dy1-O3	142.80(6)	01-Dy1-O8	77.88(6)
06-Dv1-O1	141.81(7)	, 07-Dv1-O4	75.38(6)
06-Dy1-07	112.44(7)	07-Dy1-O1	77.21(6)
06-Dy1-O2	80.42(7)	07-Dy1-O2	141.30(6)
, 06-Dy1-05	72.47(6)	07-Dy1-05	143.76(7)
06-Dy1-O8	71.25(6)	07-Dy1-08	71.73(7)
03-Dy1-O4	73.12(6)	02-Dy1-O4	142.73(6)
03-Dy1-O1	73.73(6)	02-Dy1-O1	72.06(6)
03-Dy1-07	80.50(7)	02-Dy1-05	74.30(6)
03-Dy1-O2	111.86(7)	02-Dy1-08	79.22(6)
03-Dy1-05	77.36(6)	08-Dy1-O4	119.54(6)
03-Dy1-08	143.88(6)	08-Dy1-O4	137.87(6)
Table SE Complay 4			
Table 55 Complex 4	2 219/6)	Dv1 022	2 244(6)
Dy1-023	2.318(6)	Dy1-022	2.344(6)
Dy1-021	2.319(0)	Dy1-024	2.357(5)
Dy1-019	2.525(5)	Dy1-018	2.500(5)
Dy1-020	2.345(0)	Dy1-017	2.303(3)
Dy2 = 013	2.340(0) 2.254(6)	Dy2-012	2.333(0)
Dy2 = 010	2.334(0)	Dy2 = 03	2.340(0)
Dy2 = 014 Dy2 = 011	2,300(3)	Dy2 = 010 Dy2 = 015	2 343(6)
Dv3 - O8	2.702(0)	Dv3-05	2 351(6)
$Dy_3 = 03$	2.323(3)	Dy3-05	2.331(0)
$Dy_3 = 03$	2.327(0)	Dy3-00	2.307(3)
$Dy_{3} = 02$	2.336(0)	Dy3-07	2.371(3)
$Dy_3 = 01$ $022 = Dy_1 = 021$	2.547(0)	013 - 04	2.379(7)
023 - Dy1 - 021	74.0/(15)	013 - Dy2 - 010	72 07(19)
023 - Dy1 - 019	149.05(10)	012 - 012 - 014	151 9(2)
021 - 019 - 019	116 5(2)	010 - 0y2 - 014	129 6(2)
023 - 031 - 020	80 6(2)	$015 - Dy^2 - 014$	76 8(2)
019 - Dy1 - 020	71 22/19)	$013 - Dy^2 - 014$	73 18(19)
023 - Dy1 - 020	75 8(2)	015 - 0y2 - 014 016 - 0y2 - 014	74 4(2)
023 - 0y1 - 022 021 - 0y1 - 022	71 1(2)	010 - 0y2 - 014 012 - 0y2 - 011	7 -
019 - Dy1 - 022	139 8(2)	09-Dy2-011	73 6(2)
020 - Dy1 - 022	147 7(2)	$010 - Dy^2 - 011$	79 9(2)
023 - Dy1 - 022		$015 - Dy^2 - 011$	133 7(2)
023 Dy1 - 024 021 - Dy1 - 024	74 54(19)	013 - Dy2 - 011	148 43(19)
019 - Dy1 - 024	110.21(19)	$016 - Dy^2 - 011$	73.6(2)
010 Dy1 027		010 Dy2 011	, 5.0(2)

020—Dy1—024	73.65(19)	014—Dy2—011	122.87(19)
O22—Dy1—O24	83.9(2)	08—Dy3—O3	144.8(2)
023—Dy1—018	146.6(2)	08—Dy3—O2	75.2(2)
O21—Dy1—O18	76.82(19)	O3—Dy3—O2	80.2(2)
019—Dy1—018	81.63(19)	08—Dy3—01	116.3(2)
O20—Dy1—O18	75.2(2)	O3—Dy3—O1	77.7(3)
O22—Dy1—O18	111.9(2)	O2—Dy3—O1	71.3(2)
O24—Dy1—O18	140.4(2)	08—Dy3—05	136.7(2)
023—Dy1—017	81.4(2)	O3—Dy3—O5	75.6(2)
O21—Dy1—O17	116.8(2)	O2—Dy3—O5	144.5(2)
019—Dy1—017	76.9(2)	01—Dy3—05	78.4(2)
O20—Dy1—O17	136.05(18)	08—Dy3—O6	76.0(2)
022—Dy1—017	72.9(2)	O3—Dy3—O6	111.6(2)
O24—Dy1—O17	147.57(19)	O2—Dy3—O6	141.93(19)
018—Dy1—017	70.9(2)	01—Dy3—O6	145.3(2)
012—Dy2—09	135.8(2)	O5—Dy3—O6	72.3(2)
012—Dy2—010	75.6(2)	08—Dy3—07	71.41(19)
09—Dy2—O10	72.3(2)	O3—Dy3—O7	142.4(3)
012—Dy2—015	148.3(2)	O2—Dy3—O7	111.8(2)
09—Dy2—015	75.8(2)	01—Dy3—07	73.4(2)
010—Dy2—015	122.0(2)	05—Dy3—07	75.3(2)
012—Dy2—013	91.5(2)	06—Dy3—07	81.44(19)
09—Dy2—013	105.1(2)	08—Dy3—O4	77.4(2)
010—Dy2—013	70.1(2)	O3—Dy3—O4	71.9(3)
015—Dy2—013	73.3(2)	02—Dy3—O4	74.0(2)
012—Dy2—016	103.9(2)	01—Dy3—O4	136.9(2)
09—Dy2—016	91.1(2)	05—Dy3—O4	121.0(2)
010—Dy2—016	151.9(2)	06—Dy3—O4	75.8(2)
015—Dy2—016	73.1(2)	07—Dy3—O4	145.0(2)
Table S6 Comply 5			
Dv1-01	2,509(4)	Dv1-07	2,406(4)
Dv1 - 05	2 433(4)	Dv1 - 04	2 518(4)
Dy1 - 08	2.264(4)	Dy1-06	2.276(4)
Dv1-03	2.300(4)	Dv1-02	2.326(4)
01 - Dv1 - 04	153.89(15)	07 - Dv1 - 01	66.65(15)
07 - Dv1 - 05	76.64(16)	07 - Dv1 - 04	138.89(15)
05-Dv1-01	137.63(14)	05—Dv1—04	67.17(14)
08 - Dv1 - 01	117.68(15)	08 - Dv1 - 07	77.66(15)
08-Dv1-05	71.72(14)	08-Dv1-04	73.11(15)
08—Dv1—06	140.13(16)	08-Dv1-03	135.27(15)
08—Dv1—02	79.77(15)	06—Dv1—01	74.08(15)
06—Dv1—07	73.04(15)	06—Dv1—05	75.62(15)
06—Dy1—04	114.00(15)	06-Dy1-03	81.21(15)
, 06—Dy1—O2	137.87(15)	03—Dy1—01	84.00(15)
03—Dy1—07	145.05(15)	03—Dy1—05	119.60(15)
03—Dy1—O4	73.37(15)	03—Dy1—O2	69.15(16)
02—Dy1—01	73.65(15)	02—Dy1—07	116.62(15)
02-Dy1-05	145.23(14)	02-Dy1-04	86.01(15)

Table S7 Continuous Shape Measures (CShMs) of the coordination geometry for Dy(III) ion in complex 1 (S values calculated with the Shape program). The *S* values indicated the proximity to the ideal polyhedron, thus, a S = 0 corresponds to the non-distorted polyhedron. The three closer ideal geometries to the real complexes are listed and below is the symmetry and description for each polyhedron.

Complexes	s	polyhedron

		0.488	SAPR-8, D _{4d} , Square antiprism		
1Nd		1.943	TDD-8, D_{2d} , Triangular dodecahedron		
		2.198	BTPR-8, C _{2v} , Biaugmented trigonal prism		
		0.290	SAPR-8, D _{4d} , Square antiprism		
1Tb		2.123	TDD-8, D _{2d} , Triangular dodecahedron		
		2.265	BTPR-8, C _{2v} , Biaugmented trigonal prism		
		0.818	SAPR-8, D _{4d} , Square antiprism		
	Dy1	1.076	TDD-8, D _{2d} , Triangular dodecahedron		
2		1.725	BTPR-8, C_{2v} , Biaugmented trigonal prism		
		0.457	TDD-8, D _{2d} , Triangular dodecahedron		
	Dy2	1.989	SAPR-8, D_{4d} , Square antiprism		
		2.140	BTPR-8, C_{2v} , Biaugmented trigonal prism		
		0.343	SAPR-8, D _{4d} , Square antiprism		
3		1.735	TDD-8, D _{2d} , Triangular dodecahedron		
		1.895	BTPR-8, C _{2v} , Biaugmented trigonal prism		
		0.478	SAPR-8, D _{4d} , Square antiprism		
	Dy1	1.554	TDD-8, D _{2d} , Triangular dodecahedron		
		2.214	BTPR-8, C_{2v} , Biaugmented trigonal prism		
		0.471	TDD-8, D _{2d} , Triangular dodecahedron		
4	Dy2	1.473	SAPR-8, D_{4d} , Square antiprism		
		2.369	BTPR-8, C_{2v} , Biaugmented trigonal prism		
		0.298	SAPR-8, D _{4d} , Square antiprism		
	Dy3	1.615	TDD-8, D _{2d} , Triangular dodecahedron		
		2.007	BTPR-8, C _{2v} , Biaugmented trigonal prism		

	0.746	SAPR-8, D _{4d} , Square antiprism
5	2.464	TDD-8, D_{2d} , Triangular dodecahedron
	2.580	BTPR-8, C_{2v} , Biaugmented trigonal prism

Fig. S1 Orientations of the anisotropy axes for each of the two Dy(III) ions in complexes 2 as calculated by MAGELLAN.

Fig. S2 Orientations of the anisotropy axes for Dy(III) ion in complexes 3 as calculated by MAGELLAN.

Fig. S3 Orientations of the anisotropy axes for each of the three Dy(III) ions in complexes 4 as calculated by MAGELLAN.

Fig. S4 Orientations of the anisotropy axes for each of Dy(III) ion in complexes 5 as calculated by MAGELLAN.

Fig. S5 The crystal structure of complex 1Nd (hydrogen atoms are omitted for clarity).

Fig. S6 experimental data of temperature dependence of the $\chi_{\rm M} T$ values of complexes 1-5.

Fig. S7 Field dependence of the magnetization between 2 and 8 K for 2 and 3.

Fig. S8 Field dependence of the magnetization between 2 and 8 K for 4 and 5.

Fig. S9 The temperature dependence of the out-of-phase (χ '') ac susceptibility and in-phase (χ ') ac susceptibility of complex 2 under 0 Oe in the frequency range 1-10000 Hz.

Fig. S10 The frequency dependence of the in-phase (χ ') ac susceptibility of complex 2 under 0 Oe and 2000 Oe in the frequency range 1-10000 Hz.

Fig. S11 The temperature dependence of the out-of-phase (χ'') ac susceptibility and in-phase (χ') ac susceptibility of complex **2** under 2000 Oe in the frequency range 1-10000 Hz.

Fig. S12 The temperatue dependence and frequency dependence of the in-phase (χ') ac susceptibility of complex 1Tb under 1500 Oe in the frequency range 1-10000 Hz.

Fig. S13 The temperatue dependence and frequency dependence of the in-phase (χ ') ac susceptibility of complex 1Nd under 2000 Oe in the frequency range 1-10000 Hz.

Fig. S14 The temperature dependence of the out-of-phase (χ ") ac susceptibility of complex **1(Tb)** under 1500 Oe and the out-of-phase (χ ") ac susceptibility of complex **1(Nd)** under 2000 Oe in the frequency range 1-10000 Hz.

Fig. S15 The temperature dependence of the in-phase (χ ') and the frequency dependence of the in-phase (χ ') ac susceptibility component under 1500 Oe for complex 1(Tb).

Fig. S16 The temperature dependence of the in-phase (χ ') and the frequency dependence of the in-phase (χ ') ac susceptibility component under 2000 Oe for complex 1(Nd).

Fig. S17 The temperature dependence of the in-phase (χ ") ac susceptibility component under 0 Oe for complex 3.

Fig. S18 The frequency dependence of the out-of-phase (χ '') and the temperature dependence of the out-of-phase (χ '') ac susceptibility component under 4000 Oe for complex **3**.

Fig. S19 The temperature dependence of the in-phase (χ ') and the frequency dependence of the in-phase (χ ') ac susceptibility component under 4000 Oe for complex **3**.

Fig. S20 The temperature dependence of the in-phase (χ ') and the frequency dependence of the in-phase (χ ') ac susceptibility component under 900 Oe for complex **4**.

Fig. S21 The frequency dependence of the out-of-phase (χ ") ac susceptibility component under 900 Oe for complex **4** and the temperature dependence of the out-of-phase (χ ") ac susceptibility component under 700 Oe for complex **5**.

Fig. S22 The temperature dependence of the out-of-phase (χ '') and the in-phase (χ ') ac susceptibility component under 0 Oe for complex **5**.

Fig. S23 The frequency dependence of the out-of-phase (χ '') and the in-phase (χ ') ac susceptibility component under 0 Oe for complex **5**.

Fig. S24 The temperature dependence of the in-phase (χ ') and the frequency dependence of the in-phase (χ ') ac susceptibility component under 700 Oe for complex 5.

Fig. S25 Cole-Cole (Argand) plot for **1**Tb and **1**Nd obtained using the ac susceptibility data. The solid lines correspond to the best fit obtained with a generalized Debye model under 1500 Oe and 2000 Oe.

Fig. S26 Cole-Cole (Argand) plot for **2** obtained using the ac susceptibility data. The solid lines correspond to the best fit obtained with a generalized Debye model under zero field and under 2000 Oe.

Fig. S27 Cole-Cole (Argand) plot for **3** and **4** obtained using the ac susceptibility data. The solid lines correspond to the best fit obtained with a generalized Debye model under 700 Oe and 4000 Oe.

Fig. S28 Cole-Cole (Argand) plot for **5** obtained using the ac susceptibility data. The solid lines correspond to the best fit obtained with a generalized Debye model under 900 Oe.

Fig. S29 The $ln(\tau)$ vs. 1/T plot for 3 and 4 based on the ac susceptibility data under optimum field

Fig. S30 SEM image of the GaN-IM⁺-[Dy(DBM)₄]⁻.

Fig. S31 X-ray Diffraction (XRD) patterns for the pure GaN and GaN-IM⁺ -[Dy(DBM)₄] $^{-}$.

Table S8 Energy barriers obtained from the Arrhenius law fitting and Equation 1 of the out-of-phase (χ '') ac susceptibility data under optimum dc field.

Relaxation — processes	Orbach processes		Ra	Raman and Orbach processes				
	U _{eff} /κ _Β (K)	τ ₀ (s)	C (s ⁻¹ ·K ⁻ⁿ)	n	$U_{\rm eff}/\kappa_{\rm B}$ (K)	τ ₀ (s)		
1(Tb)	24.1	1×10 ⁻⁷	20.796	5.5	37.5	2.243×10 ⁻⁷		
1(Nd)	23.7	2×10 ⁻⁵	2.0098	6	27.766	1.956×10 ⁻⁷		
2	116.98	6.1×10 ⁻¹⁰	0.152	4.179	129.25	1.172×10 ⁻¹⁰		
3	9.7	1.7×10 ⁻³	2.0354	2.43	13.12	1.107×10 ⁻⁶		

4	22.6	3.2×10 ⁻⁸	2	5.845	14.127	7.0744×10 ⁻⁶
5	42.6	7.1×10 ⁻⁹	14.232	3.393	55.58	5.85×10 ⁻¹⁰

Table S9 Energy barriers obtained from the Arrhenius law fitting and Equation 1 of the out-of-phase (χ '') ac susceptibility data under optimum 0 field.

Relaxation — processes	Orbach processes			Raman, QTM and Orbach processes				
	U _{eff} /κ _Β (K)	$ au_0$ (s)	q	C (s ⁻¹ ⋅K ⁻ⁿ)	n	U _{eff} /κ _B (K)	$ au_0$ (s)	
2	57.7	8.3×10 ⁻⁸	4.481×10 ⁻⁴	0.73	5.168	77.6	2×10 ⁻⁸	

Table S10 Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for complex 2 at 0 Oe in the

temperature range 2-13 K.							
т/ к	$\chi_{ m S}$ / cm ³	χ_{T} / cm ³	τ ₁ /s	α_1	τ_2/s	α2	β
	mol ⁻¹	mol ⁻¹					
2	1.19100	13.66910	0.00034	0.22722	0.00435	0.41695	0.71
2.25	1.045	12.19109	0.00034	0.23	0.00441	0.42758	0.71
2.5	0.939	10.89701	0.00034	0.23	0.00389	0.42987	0.71
3	0.75	8.79003	0.00032	0.23	0.00146	0.39859	0.64673
3.5	0.67	7.67003	0.00032	0.23	0.00212	0.41456	0.67183
4	0.568	7.08799	0.00031	0.22999	0.00315	0.44	0.63914
4.5	0.513	6.03011	0.00031	0.23	0.00169	0.43382	0.64116
4.75	0.46001	5.52	0.00029	0.22999	0.00068	0.36224	0.4768
5	0.447	5.23305	0.00024	0.22072	0.0006	0.32438	0.31092
5.5	0.45262	5.41513	0.00031	0.22972	0.01205	0.43997	0.70513
6.5	0.41720	4.67600	0.00027	0.19667	0.01673	0.44	0.71
7	0.43145	4.198	0.00022	0.14118	0.01222	0.43678	0.71
7.5	0.33802	3.17748	0.0002	0.13001	0.00011	0.19342	0.71
8	0.37313	2.87512	0.00008	0.13	0.00015	0.08417	0.35785

8.5	0.28569	2.77983	0.0001	0.13001	0.00006	0.11188	0.65875
9	0.28801	2.57572	0.00004	0.13258	0.0001	0.01571	0.70763
9.5	0.12323	2.61189	0.00005	0.13023	0.00001	0.14399	0.70957
10	0.56305	2.85397	0.00003	0.13002	0.50289	0.09290	0.71000
10.5	0.53028	2.72095	0.00002	0.13001	0.49744	0.09714	0.70999
11	0.56610	2.5	0.00002	0.13	0.49683	0.09553	0.70997
11.5	0.04884	2.16616	0.00002	0.13	0.00001	0.05724	0.31049
12	0.65500	2.08744	0.00001	0.13001	0.48120	0.09422	0.7097
12.5	0.30001	1.73601	0.00001	0.23	0.00001	0.05435	0.31042
13	0.19742	2.15106	0.00001	0.13124	0.00001	0.10000	0.70995

Table S11 Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for complex **1(Tb)** at 1500 Oe in the temperature range 2-9.5 K.

Т/ К	$\chi_{\rm S}$ / cm ³ mol ⁻¹	χ_T / cm^3 mol ⁻¹	τ <u>1</u> /s	α ₁
2	0.08444	2.40689	0.0005	0.15203
2.25	0.09755	2.43482	0.00043	0.12446
2.5	0.09186	2.53117	0.0004	0.13626
2.75	0.09898	2.54486	0.00036	0.1415
3	0.07956	2.52368	0.00032	0.16352
3.25	0.08204	2.47491	0.0003	0.18047
3.5	0.09618	2.34148	0.00026	0.17457
3.75	0.10241	2.22521	0.00023	0.1763
4	0.11589	2.08889	0.0002	0.16619
4.25	0.11883	2.01025	0.00018	0.16750
4.5	0.14265	1.91547	0.00016	0.15669

4.75	0.145	1.79692	0.00014	0.14606
5	0.15509	1.71746	0.00013	0.13773
5.5	0.16538	1.57695	0.0001	0.12993
5.75	0.169	1.50248	0.00009	0.12385
6	0.17122	1.41458	0.00009	0.11487
6.25	0.17151	1.3419	0.00008	0.1151
6.5	0.17916	1.27544	0.00007	0.09804
6.75	0.191	1.22979	0.00007	0.08608
7	0.19735	1.20401	0.00006	0.0794
7.25	0.19794	1.1392	0.00006	0.07987
7.5	0.19932	1.06787	0.00005	0.06558
7.75	0.20444	1.02029	0.00005	0.05763
8	0.213	0.95052	0.00004	0.01421
8.25	0.21904	0.93168	0.00004	0.0029
8.5	0.22325	0.90521	0.00004	0.02735
8.75	0.22575	0.86513	0.00004	0.00445
9	0.233	0.81921	0.00003	0.0033
9.25	0.23524	0.78315	0.00003	0.01761
9.5	0.23472	0.74365	0.00003	0.00969

Table S12 Best fitted parameters (χ_{τ} , χ_s , τ and α) with the extended Debye model for complex **1(Nd)** at 2000 Oe in the temperature range 2-9.5 K.

т/ к	$\chi_{ m s}$ / cm ³ mol ⁻¹	χ_T / cm ³ mol ⁻¹	τ ₁ /s	α_1	τ ₂ /s	α ₂	β	
2	0.01248	0.3314	0.00185	0.15437	0.1982	0.11555	0.56742	
2.25	0.01162	0.41357	0.00127	0.13724	0.25127	0.04242	0.43668	

2.5	0.0086	0.35664	0.00088	0.17427	0.17143	0.2202	0.49674
2.75	0.00868	0.36435	0.00051	0.13038	0.30761	0.0586	0.44034
3	0.00670	0.24089	0.0003	0.13012	0.505	0.01792	0.61159
3.25	0.00609	0.20248	0.00018	0.13028	0.505	0.27731	0.67881
3.5	0.0037	0.39802	0.00011	0.13009	0.505	0.1	0.32629
4	0.00024	0.21956	0.00004	0.13	0.33986	0.07185	0.53198
4.5	0.01742	0.24748	0.00001	0.16494	0.18428	0.21098	0.48372
5	0.04664	0.34899	0.00004	0.149	0.34255	0.08459	0.39739

Table S13 Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for complex **2** at 2000 Oe in the temperature range 6-13 K.

Т/ К	$\chi_{\rm S}$ / cm ³ mol ⁻¹	χ_T / cm^3 mol ⁻¹	τ ₁ /s	α_1	τ ₂ /s	α2	β
6	0.2651	2.8	0.00494	0.13	0.00314	0.09978	0.70923
6.5	0.25094	3.18792	0.00378	0.15807	0.00202	0.02491	0.53207
7	0.21661	4.48037	0.00113	0.1355	0.01753	0.02062	0.57483
7.5	0.20466	3.20016	0.00044	0.13	0.00307	0.08704	0.66179
8	0.17783	3	0.00017	0.13012	0.00132	0.08592	0.52614
8.5	0.09828	2.71688	0.00009	0.18914	0.00072	0.09976	0.68876
9	0.055	2.72471	0.00029	0.13612	0.00003	0.12252	0.5709
9.5	0.08001	2.50002	0.00003	0.22997	0.00023	0.06544	0.71
10	0.05272	2.41333	0.00008	0.13	0.00001	0.07977	0.65444
10.5	0.46999	2.80436	0.00003	0.19965	0.50141	0.09661	0.67602
11	0.63467	2.46410	0.00002	0.13	0.50271	0.09744	0.64610
11.5	0.56238	2.22622	0.00001	0.13001	0.50010	0.09656	0.69976
12	0.57005	2.05537	0.00001	0.13	0.50496	0.04817	0.70999

12.5	0.78230	1.641	0.00001	0.13	0.32479	0.09669	0.70997
13	1.11002	1.546	0.01111	0.13	0.00001	0.07279	0.53285

Table S14 Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for complex **3** at 4000 Oe in the temperature range 3.5-5.5 K.

•	0						
т/ к	$\chi_{\rm s}$ / cm ³	χ_T / cm ³	τ ₁ /s	α_1	τ ₂ /s	α2	β
	mol ⁻¹	mol ⁻¹					
3.5	1.01803	1.41454	0.00008	0.22946	0.02616	0.43981	0.32385
4	1.05383	1.3821	0.00007	0.22998	0.04379	0.25876	0.45144
4.2	1.03755	1.71303	0.00006	0.22896	0.20071	0.41099	0.37583
4.5	1.02128	1.74027	0.00005	0.23	0.12435	0.2042	0.39236
4.7	0.98962	1.42558	0.00003	0.22993	0.19369	0.35329	0.48239
5	0.96419	1.94891	0.00003	0.23	0.45076	0.27747	0.34857
5.2	1.00293	1.59057	0.00002	0.17971	0.505	0.38228	0.36901
5.5	0.97331	1.50795	0.00002	0.23	0.07894	0.08592	0.39295

Table S15 Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for complex **4** at 900 Oe in the temperature range 3.5-5.5 K.

•	0						
Т/ К	$\chi_{ m s}$ / cm ³	χ_{T} / cm ³	τ ₁ /s	α_1	τ_2/s	α2	β
	mol ⁻¹	mol ⁻¹					
2	0.70632	2.692	0.00008	0.22999	0.00273	0.38863	0.31
2.6	0.70903	1.78123	0.00006	0.21907	0.0007	0.43467	0.35895
2.8	0.64	1.63823	0.00003	0.22243	0.00036	0.43996	0.33005
3	0.72321	1.61001	0.00004	0.23	0.0014	0.43987	0.51445
3.25	0.75605	1.49220	0.00004	0.22997	0.00327	0.43964	0.54108
3.5	0.82298	1.41533	0.00003	0.22973	0.00581	0.43995	0.5148

Table S16 Best fitted parameters (χ_{T} , χ_{S} , τ and α) with the extended Debye model for complex **5** at 700 Oe in the temperature range 3.5-6.5 K.

Т/ К	χ_s / cm ³	χ_T / cm ³	τ_1/s	α_1
	mol ⁻¹	mol ⁻¹		
3.5	0.22304	2.42685	0.00043	0.18998
4	0.309	2.61593	0.00027	0.25664
4.25	0.40904	2.56423	0.0002	0.25412
4.5	0.52808	2.43881	0.00013	0.22184
5	0.82278	2.22392	0.00007	0.13549
5.5	1.10409	2.0344	0.00004	0.0202
6	1.321	1.90283	0.00003	0.00035
6.5	1.42866	1.7654	0.00002	0.0003

 Table S17 Parameters involved in the SAP geometry for complexes 1-5 compared to the ideal geometry

Parameters	1Tb	1Nd	2	3	4	5	Ideal SAP
Skew angle (Ø)	42.87°	44.64°	47.33°	45.36°	45.98°	45.87°	45°
V	114.58°	113.93 °	113.26°	116.54°	113.95°	116.97 °	109.48°
magic angles ($lpha$)	56.34 °	56.86°	57.47°	60.61°	57.27°	59.47°	54.7356°
d _{in} (Å)	2.79	2.86	2.78	2.82	2.77	2.86	$d_{\rm in} = d_{\rm pp}$
<i>d</i> _{pp} / <i>d*</i> _{pp} (Å)	2.54/2.58	2.63/2.61	2.15/1.97	2.44/2.33	2.55/2.45	2.44/2.42	
σø²	2.13	2.65	17.07	4.10	1.75	4.41	0
$\sigma_{\alpha}{}^{2}$	4.87	7.32	10.33	42.91	9.211	33.35	0

Table S18 The details for parameters involved in SAP geometry for 1Tb and 1Nd					
Skew angle (Ø) of	complex 1Tb (°)	Skew angle (Ø) of complex 1Nd (°)			
Ø1 = 42.87(1)	Ø2 = 45.71(1)	Ø1 = 42.96(1)	Ø2 = 45.98(1)		
Ø3 = 43.33(2)	Ø4 = 45.87(2)	Ø3 = 43.16(1)	Ø4 = 46.46(1)		
Mean value of		Mean value of			
Parameter y and magic ang	gles $lpha$ for complex 1Tb (°)	Parameter y and magic	angles $lpha$ for complex 1Nd (°)		

γ(01-Dy1-O3) = 112.55(2)	α(01-03) = 55.32(1)	γ(01-Dy1-O3) = 112.27(2)	α(01-03) = 56.27(1)		
γ(08-Dy1-O6) = 114.14(2)	α(O2-O4) = 57.84(1)	γ(O2-Dy1-O4) = 116.43(2)	α(O2-O4) = 58.25(1)		
γ(O2-Dy1-O4) = 115.47(2)	α(05-07) = 57.81(1)	γ(O5-Dy1-O7) = 117.03(2)	α(05-07) = 58.53(1)		
y(07-Dy1-05) = 116.16(2)	α(06-08) = 54.42(1)	γ(O6-Dy1-O8) = 110.02(2)	α(06-08) = 54.42(1)		
Mean value of γ = 114.58	Mean value of α = 56.34	Mean value of γ = 113.93	Mean value of α = 56.86		
Values of d _{in} for 1T	b (Å)	Values of d _{in} fe	or 1Nd (Å)		
<i>d</i> _{in} (01-04) = 2.83(8)	<i>d</i> _{in} (05-06) = 2.99(6)	d _{in} (O1-O2) = 2.75(8)	din(05-06) = 2.74(6)		
d _{in} (O2-O3) = 2.87(8)	d _{in} (06-07) = 2.76(6)	d _{in} (O3-O4) = 2.74(8)	din(07-08) = 2.74(6)		
<i>d</i> _{in} (O1-O2) = 2.71(8)	d _{in} (07-08) = 2.74(6)	d _{in} (O2-O3) = 2.84(8)	din(05-08) = 2.97(6)		
d _{in} (03-04) = 2.71(8)	d _{in} (05-08) = 2.73(6)	d _{in} (O1-O4) = 3.17(8)	din(06-07) = 2.99(6)		
Mean value of $d_{in} = 2.79(6)$		Mean value of d _{in} = 2.86(6)			
	Å)	d _{pp} (A-B) in :	1Nd (Å)		
<i>d</i> _{pp} (O1-B) = 2.58(5)	d _{pp} (O2-B) = 2.55(5)	d _{pp} (O1-B) = 2.67(5)	<i>d</i> _{pp} (O2-B) = 2.62(5)		
<i>d</i> _{pp} (O3-B) = 2.55(5)	$d_{\rm pp}({\rm O4-B}) = 2.48(5)$	d _{pp} (O3-B) = 2.73(5)	<i>d</i> _{pp} (O4-B) = 2.51(5)		
Mean value of $d_{pp}(A-B) = 2.54(5)$		Mean value of $d_{pp}(A-B) = 2.63(5)$			
σ_{ϕ}^2 and σ_{α}^2 for 1	Tb	σ_{g} ² and σ_{α} ² for 1Nd			
σ_{ϕ}^{2} = 2.13, σ_{α}^{2} = 4.87		$\sigma_{\phi}^{2} = 2.65, \sigma_{\alpha}^{2} = 7.32$			
Table S19 The details for par	ameters involved in SAP geo	metry for 2 and 3			
Skew angle (\emptyset) of comp	plex 2 (°)	Skew angle (Ø) of	complex 3 (°)		
Ø1 = 43.877(1)	Ø2 = 50.335(1)	Ø1 = 44.32(1)	Ø2 = 46.05(1)		
Ø3 = 43.993(2)	Ø4 = 51.128(2)	Ø3 = 44.07(1)	Ø4 = 47.02(1)		
Mean value of		Mean value of			
Parameter γ and magic angles α	for complex 2 (°)	Parameter γ and magic ang	gles α for complex 3 (°)		
γ(O1-Dy1-O3) = 108.37(2)	α(01-03) = 54.76(1)	γ(O1-Dy1-O3) = 111.86(2)	α(01-03) = 55.51(1)		
γ(O2-Dy1-O4) = 118.21(2)	α (O2-O4) = 57.51(1)	γ(O2-Dy1-O4) = 122.35(2)	α (O2-O4) = 60.73(1)		

γ(05-Dy1-07) = 108.62(2)	α(05-07) = 59.28 (1)	γ(05-Dy1-07) = 112.44(2)	α(O6-O8) = 56.88(1)
γ(O6-Dy1-O8) = 117.85(2)	α(O6-O8) = 58.32(1)	γ(O6-Dy1-O8) = 119.54(2)	α(05-07) = 69.32(1)
Mean value of γ =113.26	Mean value of α = 57.47	Mean value of γ = 116.54	Mean value of α = 60.61
Values of <i>d</i> _{in} for 2 (Å)		Values of d _{in} for 3 (Å)	
d _{in} (O1-O2) = 2.72(8)	d _{in} (05-06) = 2.87(6)	d _{in} (01-02) = 2.93(8)	din(O5-O6) = 2.88(6)
<i>d</i> _{in} (03-04) = 2.70(6)	d _{in} (07-08) = 2.86(6)	d _{in} (O3-O4) = 2.76(8)	din(07-08) = 2.72(6)
d _{in} (O2-O3) = 2.81(8)	d _{in} (06-07) = 2.73(6)	d _{in} (O2-O3) = 2.85(8)	din(O6-O7) = 2.91(6)
<i>d</i> _{in} (01-04) = 2.88(8)	d _{in} (05-08) = 2.73(6)	d _{in} (01-04) = 2.81(8)	din(O5-O8) = 2.75(6)
Mean value of $d_{in} = 2.78(6)$		Mean value of d _{in} = 2.82(6)	
d _{pp} (A-B) in 2 (Å)		d _{pp} (A-B) in 3 (Å)	
<i>d</i> _{pp} (O1-B) = 2.468(5)	<i>d</i> _{pp} (O2-B) = 2.457(5)	<i>d</i> _{pp} (O1-B) = 2.46(5)	<i>d</i> _{pp} (O2-B) = 2.23(5)
d _{pp} (O3-B) = 1.852(5)	$d_{pp}(O4-B) = 1.853(5)$	d _{pp} (O3-B) = 2.65(5)	<i>d</i> _{pp} (O4-B) = 2.44(5)
Mean value of $d_{pp}(A-B) = 2.157(5)$		Mean value of $d_{pp}(A-B) = 2.44(5)$	
weath value of $u_{pp}(A-b) = 2.157(5)$		$u_{pp}(A-b) = 2.44(5)$	
σ_{g}^{2} and	σ_{α}^{2} for 2	σ_{g}^{2} and	σ_{α}^{2} for 3
$\sigma_{\phi}^{2} = 17.07, \sigma_{\alpha}^{2} = 10.33$	σ_{α}^{2} for 2	$\sigma_{\phi}^{2} = 4.10, \sigma_{\alpha}^{2} = 42.91$	σ_{α}^{2} for 3
$\sigma_{g}^{2} = 17.07, \sigma_{\alpha}^{2} = 10.33$ Table S20 The details	σ_{α}^{2} for 2	$\sigma_{\phi}^{2} = 4.10, \sigma_{\alpha}^{2} = 42.91$ metry for 4 and 5	$\sigma_{\alpha}{}^2$ for 3
$\sigma_{\emptyset}^{2} = 17.07, \sigma_{\alpha}^{2} = 10.33$ Table S20 The details Skew angle (Ø)	σ_{α}^{2} for 2 5 for parameters involved in SAP geo of complex 4 (°)	$\sigma_{\emptyset}^{2} = 4.10, \sigma_{\alpha}^{2} = 42.91$ metry for 4 and 5 Skew angle (Ø)	σ_{α}^{2} for 3 of complex 5 (°)
$\sigma_{\emptyset}^{2} = 17.07, \sigma_{\alpha}^{2} = 10.33$ Table S20 The details Skew angle (Ø) $\emptyset 1 = 45.11(1)$	σ_{α}^{2} for 2 is for parameters involved in SAP geo of complex 4 (°) $\emptyset 2 = 46.19(1)$	$\sigma_{\emptyset}^{2} = 4.10, \sigma_{\alpha}^{2} = 42.91$ metry for 4 and 5 $\emptyset 1 = 43.85(1)$	σ_{α}^{2} for 3 of complex 5 (°) $\emptyset 2 = 47.51(1)$
$\sigma_{\emptyset}^{2} = 17.07, \sigma_{\alpha}^{2} = 10.33$ $\sigma_{\emptyset}^{2} = 17.07, \sigma_{\alpha}^{2} = 10.33$ Table S20 The details Skew angle (Ø) $\emptyset 1 = 45.11(1)$ $\emptyset 3 = 45.31(1)$	σ_{α}^{2} for 2 is for parameters involved in SAP geo of complex 4 (°) $\emptyset 2 = 46.19(1)$ $\emptyset 4 = 47.34(1)$	$\sigma_{\emptyset}^{2} = 4.10, \sigma_{\alpha}^{2} = 42.91$ metry for 4 and 5 $\emptyset 1 = 43.85(1)$ $\emptyset 3 = 44.09(1)$	σ_{α}^{2} for 3 of complex 5 (°) $\emptyset 2 = 47.51(1)$ $\emptyset 4 = 48.03(1)$
$\sigma_{\emptyset}^{2} = 17.07, \sigma_{\alpha}^{2} = 10.33$ $\sigma_{\emptyset}^{2} = 17.07, \sigma_{\alpha}^{2} = 10.33$ Table S20 The details Skew angle (Ø) $\emptyset 1 = 45.11(1)$ $\emptyset 3 = 45.31(1)$ Mean value of $\emptyset = 45.98(2)$	σ_{α}^{2} for 2 is for parameters involved in SAP geo of complex 4 (°) $\emptyset 2 = 46.19(1)$ $\emptyset 4 = 47.34(1)$	$\sigma_{\emptyset}^{2} = 4.10, \sigma_{\alpha}^{2} = 42.91$ metry for 4 and 5 \emptyset 1 = 43.85(1) \emptyset 3 = 44.09(1) Mean value of \emptyset = 45.87(2)	σ_{α}^{2} for 3 of complex 5 (°) $\emptyset 2 = 47.51(1)$ $\emptyset 4 = 48.03(1)$
$\sigma_{\emptyset}^{2} = 17.07, \sigma_{\alpha}^{2} = 10.33$ $\sigma_{\emptyset}^{2} = 17.07, \sigma_{\alpha}^{2} = 10.33$ Table S20 The details Skew angle (Ø) $\emptyset 1 = 45.11(1)$ $\emptyset 3 = 45.31(1)$ Mean value of Ø = 45.98(2) Parameter y and magic a	σ_{α}^{2} for 2 is for parameters involved in SAP geo of complex 4 (°) $\emptyset 2 = 46.19(1)$ $\emptyset 4 = 47.34(1)$ angles α for complex 4 (°)	$\sigma_{\emptyset}^{2} = 4.10, \sigma_{\alpha}^{2} = 42.91$ metry for 4 and 5 $\emptyset 1 = 43.85(1)$ $\emptyset 3 = 44.09(1)$ Mean value of $\emptyset = 45.87(2)$ Parameter γ and magic a	σ_{α}^{2} for 3 of complex 5 (°) $\emptyset 2 = 47.51(1)$ $\emptyset 4 = 48.03(1)$ angles α for complex 5 (°)
σ_{\emptyset}^2 and σ_{\emptyset}^2 and σ_{\emptyset}^2 = 17.07, σ_{α}^2 = 10.33 Table S20 The details Skew angle (Ø) \emptyset 1 = 45.11(1) \emptyset 3 = 45.31(1) Mean value of Ø = 45.98(2) Parameter y and magic a γ (O1-Dy1-O3) = 117.00(2)	σ_{α}^{2} for 2 is for parameters involved in SAP geo of complex 4 (°)	$\sigma_{\emptyset}^{2} = 4.10, \sigma_{\alpha}^{2} = 42.91$ metry for 4 and 5 $\emptyset 1 = 43.85(1)$ $\emptyset 3 = 44.09(1)$ Mean value of $\emptyset = 45.87(2)$ Parameter y and magic a $\gamma(O1-Dy1-O3) = 114.00(2)$	σ_{α}^{2} for 3 of complex 5 (°) $\emptyset 2 = 47.51(1)$ $\emptyset 4 = 48.03(1)$ angles α for complex 5 (°) α (O1-O3) = 61.45(1)
Weat value of $d_{pp}(A-B) = 2.137(3)$ σ_{\emptyset}^2 and $\sigma_{\emptyset}^2 = 17.07, \sigma_{\alpha}^2 = 10.33$ Table S20 The details Skew angle (Ø) Ø1 = 45.11(1) Ø3 = 45.31(1) Mean value of Ø = 45.98(2) Parameter y and magic a $\gamma(O1-Dy1-O3) = 117.00(2)$ $\gamma(O2-Dy1-O4) = 111.91(2)$	σ_{α}^{2} for 2 is for parameters involved in SAP geo of complex 4 (°) $\emptyset 2 = 46.19(1)$ $\emptyset 4 = 47.34(1)$ angles α for complex 4 (°) $\alpha(01-03) = 59.77(1)$ $\alpha(02-04) = 55.68(1)$	$\sigma_{\emptyset}^{2} = 4.10, \sigma_{\alpha}^{2} = 42.91$ $\sigma_{\emptyset}^{2} = 4.10, \sigma_{\alpha}^{2} = 42.91$ metry for 4 and 5 Skew angle (Ø) $\emptyset 1 = 43.85(1)$ $\emptyset 3 = 44.09(1)$ Mean value of Ø = 45.87(2) Parameter y and magic a $\gamma(O1-Dy1-O3) = 114.00(2)$ $\gamma(O2-Dy1-O4) = 119.59(2)$	σ_{α}^{2} for 3 of complex 5 (°) $\emptyset 2 = 47.51(1)$ $\emptyset 4 = 48.03(1)$ angles α for complex 5 (°) $\alpha(01-03) = 61.45(1)$ $\alpha(02-04) = 62.56(1)$
Weat value of $a_{pp}(A-B) = 2.137(3)$ σ_{\emptyset}^2 and $\sigma_{\emptyset}^2 = 17.07, \sigma_{\alpha}^2 = 10.33$ Table S20 The details Skew angle (Ø) Ø1 = 45.11(1) Ø3 = 45.31(1) Mean value of Ø = 45.98(2) Parameter y and magic a $\gamma(O1-Dy1-O3) = 117.00(2)$ $\gamma(O2-Dy1-O4) = 111.91(2)$ $\gamma(O5-Dy1-O7) = 110.17(2)$		$\sigma_{\emptyset}^{2} = 4.10, \sigma_{\alpha}^{2} = 42.91$ metry for 4 and 5 $\phi^{1} = 43.85(1)$ $\phi^{3} = 44.09(1)$ Mean value of $\phi = 45.87(2)$ Parameter y and magic a $\gamma(O1-Dy1-O3) = 114.00(2)$ $\gamma(O2-Dy1-O4) = 119.59(2)$ $\gamma(O5-Dy1-O7) = 116.62(2)$	σ_{α}^{2} for 3 of complex 5 (°) $\emptyset 2 = 47.51(1)$ $\emptyset 4 = 48.03(1)$ angles α for complex 5 (°) $\alpha(01-03) = 61.45(1)$ $\alpha(02-04) = 62.56(1)$ $\alpha(06-08) = 54.00(1)$

Mean value of γ = 113.95	Mean value of α = 57.27	Mean value of γ = 116.97	Mean value of α = 59.47
Values of <i>d</i> _{in} for 4 (Å)		Values of <i>d</i> _{in} for 5 (Å)	
d _{in} (O1-O2) = 2.71(8)	d _{in} (05-06) = 2.71(6)	d _{in} (O1-O2) = 2.97(8)	din(05-06) = 2.70(6)
d _{in} (O3-O4) = 2.75(6)	d _{in} (07-08) = 2.71(6)	d _{in} (O3-O4) = 2.74(8)	din(07-08) = 2.94(6)
d _{in} (O2-O3) = 2.82(8)	d _{in} (06-07) = 2.79(6)	d _{in} (O2-O3) = 2.88(8)	din(06-07) = 2.90(6)
d _{in} (O1-O4) = 2.90(8)	d _{in} (05-08) = 2.83(6)	d _{in} (O1-O4) = 2.88(8)	din(05-08) = 2.93(6)
Mean value of $d_{in} = 2.77(6)$		Mean value of d _{in} =2.86(6)	
d _{pp} (A-B) in 4 (Å)		d _{pp} (A-B) in 5 (Å)	
d _{pp} (O1-B) = 2.46(5)	d _{pp} (O2-B) = 2.59(5)	d _{pp} (O1-B) = 2.48(5)	d _{pp} (O2-B) = 2.45(5)
$d_{\rm pp}({\rm O3-B}) = 2.57(5)$	<i>d</i> _{pp} (O4-B) = 2.58(5)	$d_{\rm pp}({\rm O3-B}) = 2.54(5)$	<i>d</i> _{pp} (O4-B) = 2.32(5)
Mean value of $d_{pp}(A-B) = 2.55(5)$		Mean value of $d_{pp}(A-B) = 2.44(5)$	
σ_{g} ² and σ_{α} ² for 4		$\sigma_{m arphi}^2$ and σ_{lpha}^2 for 1Nd	
$\sigma_{\emptyset}^{2} = 1.75, \sigma_{\alpha}^{2} = 9.21$		$\sigma_{\emptyset}^{2} = 4.41, \sigma_{\alpha}^{2} = 33.35$	

Fig. S32 (a) Crystal structure of **1Tb**. (b) Skew angle (\emptyset) for the SAP coordination geometry. (c) Scheme showing the parameters d_{in} , d_{pp} , α and γ for the SAP coordination geometry.

Fig. S33 X-ray Diffraction (XRD) patterns for **2** stirring in butanone and acetone, and the theoretical structure of **2** and Dy(DBM)_{3.}