## Three-dimensional Graphene Coated Shape Memory Polyurethane Foam with Fast Responsive Performance

Tianjiao Wang,<sup>a,b</sup> Jun Zhao,<sup>\*a,b</sup> Chuanxin Weng,<sup>a,b</sup> Tong Wang,<sup>a,b</sup> Yayun Liu,<sup>a</sup> Zhipeng Han,<sup>a,c</sup> and Zhong Zhang<sup>\*a,b</sup>

<sup>a</sup> CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China

<sup>b</sup> University of Chinese Academy of Sciences, Beijing 100049, China

 <sup>c</sup> Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
 \* Corresponding authors: National Center for Nanoscience and Technology, Beijing 100190, China

E-mail: zhaoj@nanoctr.cn, zhong.zhang@nanoctr.cn



Fig. S1 The digital photographs of PU foam (a), SMPU/PU foam (b) and rGO/SMPU/PU foam (c).



Fig. S2 Schematic representation of the synthetic route for SMPU.



Fig. S3 The cross-sectional SEM images of rGO/SMPU/PU foams.

As shown in Fig. S3, the rGO is uniformly coated on the SMPU/PU foam skeleton and the thickness of rGO coating is about 0.3  $\mu$ m.



**Fig. S4** The cross-sectional SEM images of SMPU/PU foams with SMPU contents of 75 wt% (a), 67 wt%(b), and 62 wt% (c), respectively.



**Fig. S5** The shape fixity ratio (a) and shape recovery ratio (b) of SMPU/PU foams with different SMPU contents under compression strain of 40%, 60% and 80%, respectively.



Fig. S6 The TGA curves of rGO/SMPU/PU foam before and after 10 SME cycles.



**Fig. S7** The cyclic stress-strain curves of 10 cycles of PU foam (a), SMPU/PU foam (b) and rGO/SMPU/PU foam (c) at 60 °C and 80% strain, respectively. The insets are the normalized compression stress in 10 cycles.



**Fig. S8** The thermal conductivity of rGO/SMPU/PU foam during 10 shape memory cycles at 25 °C.

As shown in **Fig. S8**, the thermal conductivity of rGO/SMPU/PU foam has good stable. It firstly decreases and then remains stable.



Fig. S9 XRD curves for SMPU at RT and 60 °C.

Fig. S9 illustrates the crystallinity of SMPU at different temperatures. At room temperature (RT), two sharp diffraction peaks are located at 22° and 24°, and they belong to (110) and (200) crystallographic plane, respectively. When the temperature increases to 60 °C, two sharp diffraction peaks disappear, leaving a broad peak at 20°, which is attributed to the amorphous phase. The above results show that the crystals of SMPU are melted at 60 °C.



Fig. S10 The effect of rGO content on the response time of rGO/SMPU/PU foam.

As shown in **Fig. S10**, when the rGO content increases from 0.5 wt% to 1.0 wt%, the response time of rGO/SMPU/PU foam decreases rapidly from 2.87 s to 0.66 s. Moreover, when the rGO content further increases to 4.0 wt%, the response time does not decrease any more.



Fig. S11 The photographs of rGO/SMPU/PU foam with 10 shape memory cycles.

As shown in **Fig. S11**, the rGO/SMPU/PU foam exhibit good shape memory performance. The shape fixity ratio of the rGO/SMPU/PU foam under 80 % compression strain is about 98.95%±0.03% and the shape recovery ratio is always 100% during 10 shape memory cycles.



**Fig. S12** The cross-sectional SEM images of rGO/SMPU/PU foams with 40% strain (a), 60% strain (b), 80% strain (c) and shape recovery (d).

| Materials         | Stimuli     | Recovery time | Recovery ratio | Reference |
|-------------------|-------------|---------------|----------------|-----------|
|                   |             | (s)           | (%)            |           |
| PGEC composite    | electricity | 150           | 96             | 38        |
| NIPAM hydrogels   | solvent     | 10            | 98             | 8         |
| TPI-graphene-PAAm | electricity | 7             | 99             | 28        |
| composites        |             |               |                |           |

 Table S1 Shape memory performance of various SMPs.

| PNIPAM/PPY       | solvent     | 10      | 99     | 7         |
|------------------|-------------|---------|--------|-----------|
| hydrogels        |             |         |        |           |
| CB@CNC/NR@PU     | solvent     | 3-12    | 100    | 39        |
| CNT/SMP          | electricity | 10      | 98     | 32        |
| Graphene-CNT/PU  | heat        | 23-40   | 79-90  | 27        |
| CNT/EVA          | heat        | 20      | 90     | 25        |
| AgNWs/MF/Epoxy   | electricity | 25      | 99     | 16        |
| PLA-PEG          | light       | 7200    | 58-80  | 5         |
| PVA hydrogels    | heat        | 600     | 80     | 4         |
| PECU/CNC         | solvent     | 1800    | 85     | 40        |
| PEG-PCL-CNC      | solvent     | 300     | 90     | 41        |
| CB/PU            | light       | 125-350 | 78-100 | 20        |
| dPTB-mfGO        | light       | 25      | 96     | 20        |
| dPTB-mfGO        | heat        | 342     | 96     | 20        |
| dPTD-mfGO        | light       | 28      | 93     | 20        |
| dPTD-mfGO        | heat        | 390     | 93     | 20        |
| dPTD-GO          | light       | 65      | 69     | 20        |
| dPTD-GO          | heat        | 485     | 69     | 20        |
| SMPU/PU foam     | heat        | <5s     | 100    | This work |
| rGO/SMPU/PU foam | heat        | <1s     | 100    | This work |



Fig. S13 Variation of resistance change concerning compression strain for rGO/SMPU/PU foam.