Supporting information

Molten salts assisted synthesis and electromagnetic wave absorption properties of $(V_{1-x-y}Ti_xCr_y)_2AIC$ solid solutions

Wei Luo a, Yi Liu a, *, Chuangye Wang a, Dan Zhao a, Xiaoyan Yuan a, Lei

Wang ^a, Jianfeng Zhu ^a, Shouwu Guo ^{a, b, *}

^a School of Material Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China

^b Department of Electronic Engineering, School of Electronic Information and

Electrical Engineering, Shanghai Jiao Tong university, shanghai 200240, PR

China.

* Corresponding Authors:

Yi Liu, E-mail address: liuyi@sust.edu.cn

Shouwu Guo, E-mail address: swguo@sjtu.edu.cn

Fig. S1. EDX mapping results of the (a) $(V_{1/3}Ti_{1/3}Cr_{1/3})_2AIC$, (b) $(V_{0.6}Ti_{0.2}Cr_{0.2})_2AIC$ and (c) $(V_{0.8}Ti_{0.1}Cr_{0.1})_2AIC$.

Fig. S2. Frequency dependence of calculated reflection loss curves for (a) V_2AIC, (b) Cr_2AIC and (c) Ti_2AIC.

Fig. S3. Frequency dependence of calculated reflection loss curves and 2D color maps for $(V_{0.5}Cr_{0.5})_2AIC$ (a-b) and $(V_{0.5}Ti_{0.5})_2AIC$ (c-d).

Fig. S4. $|Z_{in}/Z_0|$ vs R_L value of as-prepared (a) V₂AIC, (b) Cr₂AIC, (c) Ti₂AIC, (d) (V_{0.5}Ti_{0.5})₂AIC and (e) (V_{0.5}Cr_{0.5})₂AIC.

Fig. S5. The magnetic permeability of as-prepared $(V_{1\text{-}x\text{-}y}Ti_xCr_y)_2AIC$ solid solution.

Fig. S6. The attenuation constant (a) of as-prepared $(V_{1-x-y}Ti_xCr_y)_2AIC$ solid solution.

Fig. S7. (a-d) density of states for V based MAX phases. The vertical lines are used to refer Fermi level.

Fig. S8. Total charge density maps of M atomic layers in doped MAX phases: (a) low doping amount and (b) high doping amount.

Table S1 The element concentration of obtained $(V_{1-2x}Ti_xCr_x)_2AIC$ from SEM-EDX mappings.

Stoichiometric ratio of V: Ti: Cr	Theoretical			Experimental		
	V	Ti	Cr	V	Ti	Cr
(V _{0.8} Ti _{0.1} Cr _{0.1}) ₂ AIC	0.8	0.1	0.1	0.77	0.10	0.13
(V _{0.6} Ti _{0.2} Cr _{0.2}) ₂ AIC	0.6	0.2	0.2	0.63	0.17	0.20
(V _{0.33} Ti _{0.33} Cr _{0.33}) ₂ AIC	0.33	0.33	0.33	0.43	0.30	0.27