Supporting information

Molten salts assisted synthesis and electromagnetic wave absorption properties of $\left(\mathrm{V}_{1-\mathrm{x}-\mathrm{y}} \mathrm{Ti}_{\mathrm{x}} \mathrm{Cr}_{\mathrm{y}}\right)_{2} \mathrm{AIC}$ solid

 solutionsWei Luo ${ }^{a}$, Yi Liu ${ }^{\text {a, }}{ }^{*}$, Chuangye Wang ${ }^{\text {a }}$, Dan Zhao ${ }^{\text {a }}$, Xiaoyan Yuan ${ }^{\text {a }}$, Lei Wang ${ }^{\text {a }}$, Jianfeng Zhu ${ }^{\text {a }}$, Shouwu Guo ${ }^{\text {a, b, * }}$
a School of Material Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
${ }^{\text {b }}$ Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong university, shanghai 200240, PR China.

* Corresponding Authors:

Yi Liu, E-mail address: liuyi@sust.edu.cn
Shouwu Guo, E-mail address: swguo@sjtu.edu.cn

Fig. S1. EDX mapping results of the (a) $\left(\mathrm{V}_{1 / 3} \mathrm{Ti}_{1 / 3} \mathrm{Cr}_{1 / 3}\right)_{2} \mathrm{AIC}$, (b) $\left(\mathrm{V}_{0.6} \mathrm{Ti}_{0.2} \mathrm{Cr}_{0.2}\right)_{2} \mathrm{AIC}$ and (c) $\left(\mathrm{V}_{0.8} \mathrm{Ti}_{0.1} \mathrm{Cr}_{0.1}\right)_{2} \mathrm{AlC}$.

Fig. S2. Frequency dependence of calculated reflection loss curves for (a) $\mathrm{V}_{2} \mathrm{AIC}$, (b) $\mathrm{Cr}_{2} \mathrm{AlC}$ and (c) $\mathrm{Ti}_{2} \mathrm{AlC}$.

Fig. S3. Frequency dependence of calculated reflection loss curves and 2D color maps for $\left(\mathrm{V}_{0.5} \mathrm{Cr}_{0.5}\right)_{2} \mathrm{AIC}(\mathrm{a}-\mathrm{b})$ and $\left(\mathrm{V}_{0.5} \mathrm{Ti}_{0.5}\right)_{2} \mathrm{AIC}(\mathrm{c}-\mathrm{d})$.

Fig. S4. $\left|Z_{i n} / Z_{0}\right|$ vs R_{L} value of as-prepared (a) $\mathrm{V}_{2} \mathrm{AIC}$, (b) $\mathrm{Cr}_{2} \mathrm{AIC}$, (c) $\mathrm{Ti}_{2} \mathrm{AIC}$, (d) $\left(\mathrm{V}_{0.5} \mathrm{Ti}_{0.5}\right)_{2} \mathrm{AIC}$ and $(\mathrm{e})\left(\mathrm{V}_{0.5} \mathrm{Cr}_{0.5}\right)_{2} \mathrm{AIC}$.

Fig. S5. The magnetic permeability of as-prepared $\left(\mathrm{V}_{1-\mathrm{-x}-\mathrm{y}} \mathrm{Ti}_{x} \mathrm{Cr}_{y}\right)_{2} \mathrm{AIC}$ solid solution.

Fig. S6. The attenuation constant (a) of as-prepared $\left(\mathrm{V}_{1-x-y} \mathrm{Ti}_{x} \mathrm{Cr}_{y}\right)_{2} \mathrm{AIC}$ solid solution.

Fig. S7. (a-d) density of states for V based MAX phases. The vertical lines are used to refer Fermi level.

Fig. S8. Total charge density maps of M atomic layers in doped MAX phases: (a) low doping amount and (b) high doping amount.
Table S1 The element concentration of obtained $\left(\mathrm{V}_{1-2 \mathrm{x}} \mathrm{Ti}_{\mathrm{x}} \mathrm{Cr}_{\mathrm{x}}\right)_{2} \mathrm{AIC}$ from SEM-EDX mappings.

Stoichiometric ratio of $\mathrm{V}: ~ \mathrm{Ti}: \mathrm{Cr}$	Theoretical				Experimental		
	V	Ti	Cr	V	Ti	Cr	
$\left(\mathrm{V}_{0.8} \mathrm{Ti}_{0.1} \mathrm{Cr}_{0.1}\right)_{2} \mathrm{AIC}$	0.8	0.1	0.1	0.77	0.10	0.13	
$\left(\mathrm{~V}_{0.6} \mathrm{Ti}_{0.2} \mathrm{Cr}_{0.2}\right)_{2} \mathrm{AIC}$	0.6	0.2	0.2	0.63	0.17	0.20	
$\left(\mathrm{~V}_{0.33} \mathrm{Ti}_{0.33} \mathrm{Cr}_{0.33}\right)_{2} \mathrm{AIC}$	0.33	0.33	0.33	0.43	0.30	0.27	

