Electronic Supporting information

High-performance SERS substrate based on perovskite quantum dot-

graphene/nano-Au composites for ultrasensitive detection of

rhodamine 6G and p-nitrophenol

Jiangcai Wang,^a Cuicui Qiu,^{*a} Hua Pang,^a Junyu Wu,^b Mengtao Sun^{*c} and Dameng Liu^{*ad}

^a State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China

^b Electronic Information Science and Technology, School of Physics and Electronics, Central South University, Hunan 410083, China

^c School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China ^d Tianjin Research Institute for Advanced Equipment, Tsinghua University, Tianjin 300300, China

* Corresponding Authors Cuicui Qiu, email: cuicuiqiu@aliyun.com Mengtao Sun, email: mengtaosun@ustb.edu.cn Dameng Liu, Tel: 86-10-62797646; email: ldm@tsinghua.edu.cn

Fig. S1 The average diameter of PQDs distributed on the Graphene with the synthesis conditions of MABr/PbBr₂=4/5 (a), MABr/PbBr₂=6/5 (b) with a fixed value of oleylamine/oleic acid (1/25), and oleylamine/oleic acid =1/1 (c), oleylamine/oleic acid =1/50 (d) with a fixed value of MABr/PbBr₂ (5/5).

Fig. S2 XPS of pristine PQDs: C1s (a), N1s (b), Br3d (c), and Pb4f (d).

Fig. S3 XPS of hybrid PQD-G: C1s (a), N1s (b), Br3d (c), and Pb4f (d).

Fig. S4 (a) The emission spectrum of PQD under different molar ratios of MABr/PbBr₂ (from 3/5 to 6/5) with a fixed molar ratio of oleylamine/oleic acid (1/25). (b) The emission spectrum of PQD under different molar ratios of oleylamine/oleic acid (from 1/5 to 1/50) with a fixed molar ratio of MABr/PbBr₂ (5/5). The luminescence comparison of PQDs at the different molar ratios of (c) MABr/PbBr₂ with a fixed molar ratio of oleylamine/oleic acid (1/25) and (d) oleylamine/oleic acid with a fixed molar ratio of MABr/PbBr₂ (5/5), as taken by using a commercial phone camera under portable ultraviolet lamp illumination with 365 nm.

Fig. S5 (a) PL spectra of the PQD (black) and PQD-G (blue) at 365 nm. (b) PL decay profiles of PQD (black) and PQD-G (blue) at 488 nm.

Fig. S6 The comparison of luminescent stability of PQDs at the different molar ratios of oleylamine/oleic acid with a fixed value of MABr/PbBr₂ (5/5), which were kept at room temperature for about seven days, as taken by using a commercial phone camera under portable ultraviolet lamp illumination with 365 nm.

Fig. S7 (a) The electronic structure (energy) band and density of states of PQDs. (b) A simulated EM field distribution in a periodic SiO_2 -Cr-Au-G-PQD layered array nanostructure with a fixed radius of PQD nanoparticles (2 nm), gap distance between nanoparticles (4 nm) and graphene thickness (1 nm) at 550 nm.

Fig. S8 A simulated transmission spectra with different synthesis parameters at different excitation wavelength. (a) The thickness of graphene-dependent transmission spectra in a periodic SiO₂-Cr-Au-G-PQD layered array nanostructure. (b) The radius of PQD-dependent transmission spectra in a periodic SiO₂-Cr-Au-G-PQD layered array nanostructure. (c) The gap distance between PQD nanoparticles-dependent transmission spectra in a periodic SiO₂-Cr-Au-G-PQD layered array nanostructure. (d) A simulated EM field distribution in a periodic SiO₂-Cr-Au layered array nanostructure at 633 nm.

Fig. S9 Corresponding calibration plots of Fig. 5a for quantitative analysis of R6G at (a) 612 cm⁻¹, (b) 1183 cm⁻¹, (c) 1311 cm⁻¹, (d) 1362 cm⁻¹, (e) 1507 cm⁻¹, (f) 1649 cm⁻¹.

Fig. S10 Corresponding calibration plots of Fig. 5c for quantitative analysis of PNP at (a) 575 cm⁻¹, (b) 1112 cm⁻¹, (c) 1164 cm⁻¹, (d) 1270 cm⁻¹, (e) 1332 cm⁻¹, (f) 1593 cm⁻¹.

Fig. S11 SERS intensity responses of the PQD-G/Au for the characteristic peak of 10⁻⁶ M R6G on 12 random sites from the six different substrates (a) and from the same substrates (c). SERS intensity responses of the PQD-G/Au for the characteristic peak of 10⁻⁴ M PNP on 12 random sites from the different substrates (b) and from the same substrates (d).

Fig. S12 The intensity change of other Raman peaks on the optimized PQD-G/Au composite over 30 days of 10^{-6} M R6G (a) and 10^{-4} M PNP (b).

SERS substrate	Preparation method	Target molecule	Detection range (M)	Detection limit (M)	EF	Ref
G@CuNP/G@C u	CVD	R6G	10 ⁻⁹ ~10 ⁻⁵	10 ⁻⁹	_	1
Au NP-G-Ag NA	EBL ^{a)} , EBD ^{b)}	R6G	_	10 ⁻¹³	6.9×10 ⁷	2
GO/Ag/Psi ^{c)}	Dip-coating, Hummers	R6G	10 ⁻⁴ ~10 ⁻⁷	10-7	-	3
G/Ag/LTSi ^{d)}	Laser Ablation, EBD	R6G	10 ^{-6~} 10 ⁻¹¹	10 ⁻¹⁰	2.6×10 ⁷	4
GO/Au	CVD	R6G	_	10 ⁻⁷	1.2×10 ⁷	5
AuNPs/rGO	Hydrothermal	Pb ²⁺	10 ⁻⁹ ~10 ⁻⁶	10 ⁻⁹	-	6
G@AgNPs@Si	Hydrothermal, Electrochemical technology	R6G, Bacteria	_	10 ⁻⁹	8.3×10 ⁶	7
GO/AuNR	A seed-mediated method, modified	Rhodamine 640	_	10 ⁻⁹	1.0×10 ⁴	8
G/CuNPs	A two temperature zone CVD method	Adenosine	10 ^{-9~} 10 ⁻⁷	10 ⁻⁹	_	9
haze/GO/Au	Two-step anodization techniques followed by wet-etching and drop-casting	R6G	10 ⁻³ ~10 ⁻⁵	_	3.3×10 ³	10

 Table S1 Comparison of detection limits and linear ranges for other SERS substrates.

^{a)} EBL is the abbreviation of Electron beam lithography.

^{b)} EBD is the abbreviation of Electron beam deposition.

^{c)} PSi is the abbreviation of /silicon pyramid arrays structure.

^{d)} LTSi is the abbreviation of Laser-Textured Si.

Peak (cm ⁻¹)	EF
612	3.15×10 ¹²
1185	1.71×10 ¹²
1311	4.68×10 ¹²
1362	3.31×10 ¹²
1507	3.57×10 ¹²
1649	3.85×10 ¹²

 Table S2 Enhancement factor of characteristic peaks of R6G on the optimized PQD-G/Au substrates.

Supporting references

- 1. C. Yang, C. Zhang, Y. Huo, S. Jiang, H. Qiu, Y. Xu, X. Li and B. Man, *Carbon*, 2016.
- 2. Y. Zhao, X. Li, L. Zhang, B. Chu, Q. Liu and Y. Lu, *RSC Advances*, 2017, **7**, 49303-49308.
- 3. C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li and B. Y. Man, *Opt. Express*, 2015, **23**, 24811-24821.
- 4. Z. Chentao, L. Kun, H. Yuanqing and Z. Jianhuan, *Sensors*, 2017, **17**, 1462.
- 5. X. Liang, B. Liang, Z. Pan, X. Lang, Y. Zhang, G. Wang, P. Yin and L. Guo, *Nanoscale*, 2015, **7**, 20188-20196.
- 6. Longyun, Zhao, Wei, Gu, Cuiling, Zhang, Xinhao, Shi, Yuezhong and Xian, *Journal of Colloid and Interface ence*, 2016, **465**, 279-285.
- 7. X. Meng, H. Wang, N. Chen, P. Ding, H. Shi, X. Zhai, Y. Su and Y. He, *Anal. Chem.*, 2018, acs.analchem.7b05139.
- P. G. Vianna, D. Grasseschi, G. K. B. Costa, I. C. S. Carvalho, S. H. Domingues, J. Fontana and C. J.
 S. De Matos, ACS Photonics, 2016, acsphotonics.6b00109.
- 9. Shicai, Xu, Baoyuan, Man, Shouzhen, Jiang, Jihua, Wang, Jie and Wei, *Acs Applied Materials & Interfaces*, 2015.
- 10. S. Behera, J. Im and K. Kim, ACS Applied Nano Materials, 2019.