## **Supporting Information for:**

## A Dual-Wavelength Electrochromic Film Based on Pt(II) Complex for Optical Modulation at Telecommunication Wavelength and Dark Solid-State Display Device

Qiaozhen Pi,<sup>a,b</sup> Dongqin Bi,<sup>a</sup> Dongfang Qiu,<sup>\*a</sup> Hongwei Wang,<sup>a</sup> Xinfeng Cheng,<sup>a</sup> Yuquan Feng,<sup>a</sup> Qian Zhao,<sup>a</sup> and Mingdong Zhou<sup>\*b</sup>

<sup>a</sup>College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China <sup>b</sup>School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, P. R. China



**Figure S1.** UV-vis absorption spectra of the parent complex [(L)PtCl] (1) and the target complex [(L)Pt(C=C-ph)] (2) in  $CH_2Cl_2$  solution.

| Complex         | $\lambda_{\max, abs} (nm)$<br>( $\epsilon \times 10^4 \text{ dm}^3 \cdot \text{mol}^{-1} \cdot \text{cm}^{-1}$ ) | $\lambda_{\max, em}^{b}$ (nm) | ${I\!\!\!/} {I\!\!\!\!/} \Phi_{em}{}^c$ | τ <sub>em</sub> <sup>c</sup><br>(μs) |
|-----------------|------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------|--------------------------------------|
| [(L)PtCl]       | 452(1.87), 435(1.78), 374(1.62),<br>326(2.01), 283(3.83)                                                         | 590                           | 0.009                                   | 10.6                                 |
| [(L)Pt(C≡C-ph)] | 445(broad, 2.75), 377(2.83),<br>335(sh, 5.85), 286 (6.54)                                                        | 607                           | 0.021                                   | 11.1                                 |

Table S1. Photophysical properties of the parent and target complexes.<sup>a</sup>

<sup>*a*</sup> Measured in an air-saturated CH<sub>2</sub>Cl<sub>2</sub> solution at room temperature. <sup>*b*</sup> Excited wavelength is 450 nm. <sup>*c*</sup> PL quantum yields and lifetime.



Scheme S1. Proposed EP mechanism of the target complex.



Figure S2. The equivalent circuit proposed for the EP film coated ITO electrode.

**Table S2.** Solution resistance ( $R_s$ ), electron transfer resistance ( $R_{et}$ ) and capacity ( $C_{dl}$ ) of the EP film coated ITO electrodes prepared by various EP cycles.

| Electrode name | $R_{s}\left( \Omega ight)$ | $R_{et}\left(\Omega ight)$ | $C_{dl}$ (F/cm <sup>2</sup> ) |
|----------------|----------------------------|----------------------------|-------------------------------|
| EP-5           | 40.6                       | 385.9                      | 1.6×10-9                      |
| EP-10          | 40.7                       | 397.5                      | 1.5×10-9                      |
| EP-15          | 41.0                       | 503.4                      | 1.0×10-9                      |
| EP-20          | 35.4                       | 451.3                      | 1.2×10-9                      |
| EP-25          | 32.2                       | 384.9                      | 1.4×10 <sup>-9</sup>          |



**Figure S3.** FESEM images of the EP film coated ITO electrodes obtained after 5 (a) and 25 (b) EP cycles, respectively.



**Figure S4.** Dynamic changes of the transmittance of the EP film coated ITO electrode at 1520 nm upon switching the potential between -0.5 and +1.0 V (top) and at 773 nm (bottom) upon switching the potential between -0.5 and +1.4 V with a pulse width of 20 s.



Figure S5. Schematic graph of the solid-state EC device construction.



Figure S6. Relationship between the gel electrolyte film thickness and the spin-coating rate.



**Scheme S2**. Redox reaction cycle between anodic EC metallopolymer and cathodic EC DHV at the interface of the EP polymer and gel electrolyte films.