Supporting Information

Highly Efficient and Stable Blue Organic Light-Emitting Diodes through Selective Quenching of Long-Living Triplet Exciton of Thermally Activated Delayed Fluorescence Emitter

Won Jae Chung and Jun Yeob Lee*

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021
Figure S1. (a) UV-vis absorption spectra and normalized PL spectra of TBPe and 5CzCN (1.0 × 10⁻⁵ M THF solution). (b) Normalized PL spectra of 5CzCN film, 5CzCN:TBPe co-doped film (in DPEPO film doped with 20 wt% or 20 wt%:1 wt%).
Figure S2. (a) Experimental film structure of the thickness dependent PL ratio measurement. (b) PL ratios, corresponding fitting, and the fitted value for L_D of 5CzCN emitter doped with 20 wt% in DPEPO matrix.
Figure S3. The transient PL decay of all films.
Supplementary equations for exciton diffusion length (Figure S2)

The exciton diffusion equation could be expressed as \[^{[1-4]} \]

\[L_D^2 \cdot \frac{\partial^2 n(x)}{\partial x^2} - n(x) + \tau \cdot G = 0 \]

(1)

where \(L_D \) is the exciton diffusion length, \(x \) is the distance from the surface in the layer, \(n(x) \) is the exciton density, \(\tau \) is the exciton lifetime and \(G \) is exciton generation rate.

In addition, assuming that a layer of thickness \(d \) has a quenching interface (C_{60}), the boundary conditions are

\[n(x = 0) = 0, \]

(2-1)

\[\frac{\partial n}{\partial x} \bigg|_{x = d} = 0, \]

(2-2)

\[G(x) = G_0. \]

(2-3)

Solving equation 1 with the boundary conditions of equation 2,

\[\frac{PL_Q}{PL_B} (PL ratio) = 1 - \frac{L_D}{d} \cdot \frac{1 - \exp(-2d/L_D)}{1 + \exp(-2d/L_D)}. \]

(3)
Reference