Supporting Information

Design of Broadband Near-Infrared Y_{0.57}La_{0.72}Sc_{2.71} (BO₃)₄:Cr³⁺ Phosphors Based on One-Site Occupation and Its Application in NIR Light-Emitting Diodes

Haiyan Wu,^{a,b} Lihong Jiang,*^a Kai Li,^a Chengyu Li,*^{a,b,c} and Hongjie Zhang^{a,c}

a. State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022, China
b. University of Science and Technology of China Hefei 230026, China

c. Zhongke Rare Earth (Changchun) Co., Ltd Changchun 130000, China

* Corresponding author: Tel.:+86-0431-85262258 E-mail address: cyli@ciac.ac.cn and lhjiang@ciac.ac.cn

Computational details

The calculations were carried out using density functional theory with the PBE.¹ The Vienna ab-initio simulation package (VASP)²⁻⁵ was employed. The plane wave energy cutoff was set as 400 eV. The Fermi scheme was employed for electron occupancy with an energy smearing of 0.1 eV. The first Brillouin zone was sampled in the Monkhorst–Pack grid.^{6,7} The energy (converged to 1.0×10^{-6} eV/atom) and force (converged to 0.01eV/Å) were set as the convergence criterion for geometry optimization. The spin polarization was considered in all calculation. For Cr, the Coulomb interaction corrections with Hubbard-like U term of 3 eV are also considered for 3d.

formula	YLSBO	YLSBO:0.025Cr ³⁺
crystal system	trigonal	trigonal
space group	<i>R</i> 32	<i>R</i> 32
<i>a</i> (Å)	9.8048(6)	9.7993(8)
<i>b</i> (Å)	9.8048(6)	9.7993(8)
<i>c</i> (Å)	8.0101(6)	7.9919(7)
$\alpha = \beta(\text{deg})$	90	90
γ (deg)	120	120
Ζ	3	3
$V(Å^3)$	666.87(10)	664.62(13)
R_p	0.0638	0.0593
R_{wp}	0.0862	0.0785
χ^2	5.928	8.806

Table S1 Rietveld fitting results of YLSBO and YLSBO:0.025Cr³⁺

Table S2 Atomic positions of YLSBO

atom	site	Х	У	Z	occupancy	U _{iso}
Y1	3a	0	0	0	0.28	0.02126
Y2	9d	-0.1219	0.6667	0.6667	0.1	0.00955
Lal	3a	0	0	0	0.72	0.02126
Sc1	9d	-0.1219	0.6667	0.6667	0.9	0.00955
B1	9e	-0.2212	0.6667	0.1667	1.000	0.00128
B2	3b	0	0	0.5	1.000	0.00102
01	9e	0	-0.4091	0.5	1.000	0.00509
02	18f	-0.0114	0.2029	-0.1997	1.000	0.03002
03	9e	0	-0.1386	0.5	1.000	0.01100

atom	site	Х	у	Z	occupancy	U _{iso}
Y1	3a	0	0	0	0.28	0.02682
Y2	9d	-0.1209	0.6667	0.6667	0.1	0.00799
Lal	3a	0	0	0	0.72	0.02682
Sc1	9d	-0.1209	0.6667	0.6667	0.875	0.00799
Cr1	9d	-0.1209	0.6667	0.6667	0.025	0.00799
B1	9e	-0.2212	0.6667	0.1667	1.000	0.05884
B2	3b	0	0	0.5	1.000	0.06022
01	9e	0	-0.4074	0.5	1.000	0.01351
O2	18f	-0.0104	0.2103	-0.2081	1.000	0.04746
03	9e	0	-0.1363	0.5	1.000	0.03537

Table S3 Atomic positions of YLSBO:0.025Cr³⁺

 $Y_{0.57}La_{0.72}Sc_{2.71}(BO_3)_4:0.025Cr^{3+}$ sample.

Table S4 Luminescent paramaters of Cr³⁺ in different host materials

phosphor	$\lambda_{em (nm)}$	FWHM	PL range (nm)	ref
YLSBO:0.025Cr ³⁺	850	172	650–1200	this work
$Ca_{2}LuZr_{2}Al_{3}O_{12}:0.08Cr^{3+}$	750	117	700–850	8
$La_3Sc_2Ga_3O_{12}:0.01Cr^{3+}$	818	145	700–1100	9
$NaScSi_2O_6: 0.06Cr^{3+}$	840	140	750–950	10
$La_{3}GaGe_{5}O_{16}:0.07Cr^{3+}$	780	160	650–1050	11
$Ca_{2}LuHf_{2}Al_{3}O_{12}{:}0.08Cr^{3+}$	780	145	700–1100	12

Fig. S2 The normalized PL emission spectra of the YLSBO: xCr^{3+} (x = 0.002, 0.005, 0.01,0.015, 0.02, 0.025, 0.03, 0.04, and 0.05) phosphors ($\lambda_{ex} = 466$ nm).

Fig. S3 Relationship of $\log(I/xCr^{3+})$ with $\log(xCr^{3+})$ in YLSBO: xCr^{3+} (x = 0.03, 0.04, and 0.05) phosphors ($\lambda_{ex} = 466$ nm).

Fig. S4 The relationship of $\ln[(I_0/I_T)-1]$ with 1/T in YLSBO:xCr³⁺ phosphor.

Fig. S5 PL spectra of the NIR pc-LED at various driving currents.

Fig. S6 The corresponding PL intensities as a function of driving current.

Current (mA)	Voltage (V)	Input power (mW)	Output power (mW)
20	2.643	52.60	2.616
40	2.720	108.5	5.033
60	2.782	166.6	7.176
80	2.836	226.6	9.064
100	2.884	287.8	10.69
120	2.928	351.1	12.06
140	2.969	415.4	13.31
160	3.008	481.0	14.27
180	3.047	548.1	15.31
200	3.082	616.1	15.90
220	3.116	685.3	16.42
240	3.149	755.5	16.76
260	3.182	827.1	17.11
280	3.214	899.5	17.18
300	3.247	973.9	17.61

Table S5 The properties of NIR-LEDs prepared using YLSBO:0.025Cr³⁺ phosphor.

Reference

- 1. J. P. Perdew and K. Burke, Phys. Rev. B, 1996, 77, 3865-3868.
- 2. G. Kresse and J. Furthmüller, Comp. Mater. Sci., 1996, 6, 15-50.
- 3. G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47, 558-561.
- 4. G. Kresse and J. Hafner, Phys. Rev. B, 1994, 49, 14251-14269.
- 5. G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-11186.
- 6. H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13, 5188-5192.
- K. O. Obodo, C. N. M. Ouma, G. Gebreyesus, J. T. Obodo, S. O. Ezeonu and B. Bouhafs, *Mater. Res. Express*, 2019, 6, 106307.
- L. Zhang, S. Zhang, Z. Hao, X. Zhang, G.-h. Pan, Y. Luo, H. Wu and J. Zhang, J. Mater. Chem. C, 2018, 6, 4967-4976.
- 9. B. Malysa, A. Meijerink and T. Jüstel, J. Lumin., 2018, 202, 523-531.
- Q. Shao, H. Ding, L. Yao, J. Xu, C. Liang, Z. Li, Y. Dong and J. Jiang, *Opt. Lett.*, 2018,
 43, 5251-5254.
- V. Rajendran, T. Lesniewski, S. Mahlik, M. Grinberg, G. Leniec, S. M. Kaczmarek, W.-K. Pang, Y.-S. Lin, K.-M. Lu, C.-M. Lin, H. Chang, S.-F. Hu and R.-S. Liu, ACS Photonics, 2019, 6, 3215-3224.
- L. Zhang, D. Wang, Z. Hao, X. Zhang, G. h. Pan, H. Wu and J. Zhang, *Adv. Opt. Mater.*, 2019, 7, 1900185.