Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Materials

For

Fully-Printed Flexible Tin Oxide Thin-Film Transistors and Logic

Circuits

Kun Liang,^{a,b} Huihui Ren,^{a,b} Dingwei Li,^{a,b} Yan Wang,^b Yingjie Tang,^b Momo Zhao,^{b,c} Hong Wang,^c Wenbin Li,^{b,d} and Bowen Zhu^{b,d*}

- a. Zhejiang University, Hangzhou 310027, China.
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China.
- c. Key Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.
- d. Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China.

*Email: zhubowen@westlake.edu.cn

Fig. S1. Height profiles of printed SnO_2 films and TFTs. (a) Optical image and height profile of printed SnO_2 channel. The height was measured by a surface profilometer. (b) AFM image and corresponding height profile of printed SnO_2 film in the central area of the (a). (c) Stylus profilometer scan of the fully-printed SnO_2 TFT. The red arrow indicates scanning direction.

Fig. S2. XRD patterns of the ITO, SnO_2 , and Al_2O_3 films on glass substrate. The diffraction peaks of the ITO film on the (222) crystal plane indicate its polycrystalline structure. No obvious diffraction peaks could be observed in SnO_2 and Al_2O_3 films. The samples were prepared by spin-coating of the same precursor ink solution and annealing condition as printed films.

Fig. S3. Electrical properties of printed Al_2O_3 dielectric film. (a) Areal capacitancefrequency curve of printed Al_2O_3 film measured with a metal-insulator-metal (MIM) structure, with Au and highly doped Si (p^{++}) as the top and bottom electrodes, respectively. The areal capacitance value of the Al_2O_3 dielectric (C_i) was ~130 nF cm⁻² extrapolated to 1 Hz. (b) Leakage current density of the MIM structure as a function of applied electric field.

Fig. S4. Evolution of transfer curves of the fully printed SnO_2 TFTs as a function of (a) PBTS and (b) NBIS. (c) Threshold voltage shifts (ΔV_{th}) as a function of bias stress time. The PBTS test was carried out in air at 60 °C for 10000 s, and the applied gate bias was 1 V. The NBIS was performed in air at room temperature under white LED light illumination (4000 lux), and the applied gate bias was -1 V.

Fig. S5. Probabilistic histograms of the mobility (μ_{sat}) and V_{th} values of 80 printed devices from 4 sample substrates (fabricated from 2 batches, each batch contains 2 sample substrates). (a) Devices located at 5 different areas in each substrate were measured: top left (TL), top right (TR), bottom left (BL), bottom right (BR), and center area (C). 4 TFTs at each area were measured. In total, the parameters from 80 TFTs were collected (4 substrates × 5 area × 4 devices). (b-c) Average μ_{sat} and V_{th} values from two batches, showing high uniformity with deviations less than 10%.

Fig. S6. Transfer curves of SnO_2 TFTs with different channel thicknesses fabricated on Si substrate with 100 nm thick SiO_2 gate dielectric.

Fig. S7. Valence band spectra of ITO and SnO₂ films.

SnO ₂ thickness (nm)	$\mu_{\rm sat} \ ({\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1})$	V _{th} (V)	<i>SS</i> (V dec ⁻¹)	$I_{\rm on}/I_{o\rm ff}$
4	0.3	-11.4	6.8	2.5×10 ³
8	6.8	-20.2	4.4	9.2×10 ⁴
13	/	/	/	/
25	/	/	/	/

Table S1. Electrical properties of SnO_2 TFTs with SiO_2 gate dielectric.