Electronic Supplementary Information

Unraveling The Crucial Role of Spacer Ligand in Tuning Contact Properties in Metal–2D Perovskite Interfaces

Zhuo Xu*a, Ming Chen*d and Shengzhong Frank Liu*a,b,c,*

*aKey Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China.

bDalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

cUniversity of the Chinese Academy of Sciences, Beijing 100039, China.

dCollege of Physics and Electronics Engineering, School of Electric Power, Civil Engineering and Architecture, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, China, 030006.

*E-mail: xuzh@snnu.edu.cn (Z.X.)

*E-mail: szliu@dicp.ac.cn (S.L.)
METHODS

In this study, the DFT calculations were performed using the Vienna Ab initio Simulation Package (VASP). The projected augmented wave (PAW) pseudopotentials and the PBEsol exchange-correlation functional within the generalized gradient approximation (GGA) were employed. An energy cutoff of 500 eV was set for the plane-wave function’s expansion. The van der Waals (vdW) dispersion correction was found necessary to yield more accurate lattice constants, which are described by the DFT-D3 correction. The optimization of the bulk PEA$_2$PbI$_4$ lattice structure is performed by applying Monkhorst-Pack sampling with a Γ-centered $5\times5\times3$ k-point grid. The lattice parameters and atomic positions of bulk PEA$_2$PbI$_4$ were relaxed until the total energy changes were less than 1.0×10^{-5} eV and the maximum force component acting on each atom was less than 0.01 eV Å$^{-1}$. Then, the slab models of monolayer PEA$_2$PbI$_4$ are cleaved from the bulk structure along the stacking direction. While the initial unit structure of PEA$_2$MAPb$_2$I$_7$ and PEA$_2$MA$_2$Pb$_3$I$_{10}$ are constructed by appropriately placing the PEA$^+$ ligands at both ends of two and three layers of corner-sharing PbI$_6$ octahedra, respectively, which are obtained by cutting out tetragonal MAPbI$_3$ unit cells along the [001] direction to reduce the number of PbI$_6$ octahedra layers. For the contact simulation, a periodic boundary condition is applied along the in-plane direction, and a vacuum spacing >20 Å is set along the direction perpendicular to the interface to avoid the interaction between periodic cells in the stacking direction. For the construction of metal–PEA$_2$PbI$_4$ interfaces, Al, Ag, Ir, Au, Pd, and Pt substrates that cover a wide range of WFs are used, forming a suitable system for a systematic study of the band level alignment in metal–PEA$_2$PbI$_4$ interfaces. To form better interfacial lattice matching and minimize the interfacial stress, 2×2×1 supercell of PEA$_2$PbI$_4$ is matched with a $3\sqrt{2}\times3\sqrt{2}\times1$ supercell of the metal[001] slab. For consistence, the in-plane lattice constants of all metal–PEA$_2$MA$_{n-1}$Pb$_n$I$_{3n+1}$ (n = 1, 2, and 3) slabs are fixed in consistence with that of
PEA$_2$PbI$_4$. Thus, maximum tensile strains of 4.7% for Ir and compressive strain of 2.7% for Au are applied among the six metals, as shown in Table 1. A Γ-centered k-point sampling of $2 \times 2 \times 1$ is used for contact calculation. All the contact structures are relaxed until the total energy and maximum force component acting on each atom are 1.0×10^{-5} eV and 0.02 eV Å$^{-1}$, respectively.
Fig. S1. Structural configurations of PEA$_2$PbI$_4$.

Fig. S2. Band structures and corresponding density of states for (a) bulk PEA$_2$PbI$_4$ and (b) monolayer PEA$_2$PbI$_4$.
Fig. S3. Variation of potential step, ΔV, and Fermi level shift, ΔE_F, with W_F of metals.
Fig. S4. Band structures of (a) PEA$_2$MAPb$_2$I$_7$ and (b) PEA$_2$MA$_2$Pb$_3$I$_{10}$.
Fig. S5. Projected density of states for I 5p (dark line) and Pb 6p (red line) orbitals in all six metal-PEA$_2$MAPb$_2$I$_7$ contacts.
Fig. S6. Projected density of states for I 5p (dark line) and Pb 6p (red line) orbitals in all six metal-PEA$_2$MA$_2$Pb$_3$I$_{10}$ contacts.
Fig. S7. Schematic illustration of the energy diagram at the interface of metal-PEA$_2$PbI$_4$, -PEA$_2$MAPb$_2$I$_7$, and -PEA$_2$MA$_2$Pb$_3$I$_{10}$, with χ_1, χ_2, and χ_3 the electron affinities of PEA$_2$PbI$_4$, PEA$_2$MAPb$_2$I$_7$, and PEA$_2$MA$_2$Pb$_3$I$_{10}$, respectively.