Electronic Supplementary Information

Unraveling The Crucial Role of Spacer Ligand in Tuning

Contact Properties in Metal-2D Perovskite Interfaces

Zhuo Xua*, Ming Chend and Shengzhong Frank Liua,b,c*

^aKey Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology; Institute for Advanced Energy Materials; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.

^bDalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

^cUniversity of the Chinese Academy of Sciences, Beijing 100039, China.

^dCollege of Physics and Electronics Engineering, School of Electric Power, Civil Engineering and Architecture, State Key Laboratory of Quantum Optics and Quantum Optics Devices , Shanxi University, Taiyuan, China, 030006.

*E-mail: xuzh@snnu.edu.cn (Z.X.)

*E-mail: szliu@dicp.ac.cn (S.L.)

METHODS

In this study, the DFT calculations were performed using the Vienna Ab initio Simulation Package (VASP). The projected augmented wave (PAW) pseudopotentials and the PBEsol exchange-correlation functional within the generalized gradient approximation (GGA) were employed. An energy cutoff of 500 eV was set for the plane-wave function's expansion. The van der Waals (vdW) dispersion correction was found necessary to yield more accurate lattice constants, which are described by the DFT-D3 correction. The optimization of the bulk PEA₂PbI₄ lattice structure is performed by applying Monkhorst-Pack sampling with a Γ -centered 5×5×3 k-point grid. The lattice parameters and atomic positions of bulk PEA₂PbI₄ were relaxed until the total energy changes were less than 1.0×10^{-5} eV and the maximum force component acting on each atom was less than 0.01 eV Å⁻¹. Then, the slab models of monolayer PEA₂PbI₄ are cleaved from the bulk structure along the stacking direction. While the initial unit structure of PEA₂MAPb₂I₇ and PEA₂MA₂Pb₃I₁₀ are constructed by appropriately placing the PEA⁺ ligands at both ends of two and three layers of corner-sharing PbI₆ octahedra, respectively, which are obtained by cutting out tetragonal MAPbI₃ unit cells along the [001] direction to reduce the number of PbI₆ octahedra layers. For the contact simulation, a periodic boundary condition is applied along the in-plane direction, and a vacuum spacing >20 Å is set along the direction perpendicular to the interface to avoid the interaction between periodic cells in the stacking direction. For the construction of metal-PEA₂PbI₄ interfaces, Al, Ag, Ir, Au, Pd, and Pt substrates that cover a wide range of WFs are used, forming a suitable system for a systematic study of the band level alignment in metal-PEA₂PbI₄ interfaces. To form better interfacial lattice matching and minimize the interfacial stress, $2 \times 2 \times 1$ supercell of PEA₂PbI₄ is matched with a $3\sqrt{2} \times 3\sqrt{2} \times 1$ supercell of the For consistence, the in-plane lattice constants of all metal[001] slab. metal-PEA₂MA_{n-1}Pb_nI_{3n+1} (n = 1, 2, and 3) slabs are fixed in consistence with that of PEA₂PbI₄. Thus, maximum tensile strains of 4.7% for Ir and compressive strain of 2.7% for Au are applied among the six metals, as shown in Table 1. A Γ -centered k-point sampling of 2×2×1 is used for contact calculation. All the contact structures are relaxed until the total energy and maximum force component acting on each atom are 1.0×10⁻⁵ eV and 0.02 eV Å⁻¹, respectively.

Fig. S1. Structural configurations of PEA₂PbI₄.

Fig. S2. Band structures and corresponding density of states for (a) bulk PEA_2PbI_4 and (b) monolayer PEA_2PbI_4 .

Fig. S3. Variation of potential step, ΔV , and Fermi level shift, $\Delta E_{F_{r}}$ with W_{F} of metals.

Fig. S4. Band structures of (a) $PEA_2MAPb_2I_7$ and (b) $PEA_2MA_2Pb_3I_{10}$.

Fig. S5. Projected density of states for I 5p (dark line) and Pb 6p (red line) orbitals in all six metal- $PEA_2MAPb_2I_7$ contacts.

Fig. S6. Projected density of states for I 5p (dark line) and Pb 6p (red line) orbitals in all six metal- $PEA_2MA_2Pb_3I_{10}$ contacts.

Fig. S7. Schematic illustration of the energy diagram at the interface of metal-PEA₂PbI₄, -PEA₂MAPb₂I₇, and -PEA₂MA₂Pb₃I₁₀, with χ_1 , χ_2 , and χ_3 the electron affinities of PEA₂PbI₄, PEA₂MAPb₂I₇, and PEA₂MA₂Pb₃I₁₀, respectively.