Assembly of USPIO/MOF nanoparticles with high proton relaxation

rates for ultrasensitive magnetic resonance sensing

Zhou Xu^{a*}, Yanqiu Chen^a, Maolong Chen^a, Wei Chen^b and Yunhui Cheng^{a*}

^aCollege of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
^bSchool of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
*Correspondence: Zhou Xu

> Email: xz_jnu@126.com Yunhui Cheng Email: chengyh6488@gmail.com Tel: +86-731-85258322

Scheme S1 The fabrication and assembly of the USPIO/MOF.

Fig.

Fig. S2 TEM of (a) Antibody-MOF and (b) Antigen-USPIO

Fig. S3 T_2 of spiked BPA and its analogues following magnetic relaxation by the MRS (spiked with 100 pg mL⁻¹ BPA and the 500 pg mL⁻¹ analogues). The peak order of the compounds in the sensor analysis are BPA, 4-OP, 4-CP and BADGE respectively.

Table S1

Comparison for BPA detection between this work and references

Determination method	Materials	Linear range (ng mL ⁻¹)	LOD (ng mL ⁻¹)	Refs.
Electrochemical detection	Ultrasound assisted magnetic molecularly imprinted polymers	15.98-2283	2.0	1
Electrochemical Sensing	Molecular imprinting TiO ₂ single crystals	2.28-4566	0.69	2
Chemiluminescence determination	Molecularly Imprinted Microspheres	500-1500	8.0	3
Fluorescence Sensing	FeOx/ZnS Nanocomposites	0.00-80	0.36	4
Magnetic separation fluorescent aptasensor	NH ₂ -Fe ₃ O ₄	0.20-8.0	0.047	5
Photoenhanced Electrochemical Detection	Au Nanoparticles Decorated TiO ₂ Nanotube Arrays	22.83-8880.87	1.42	6
Magnetic relaxation switch immunosensor	Superparamagnetic iron oxide nanoparticles	1.0-45	0.40	7
Magnetic resonance sensing	USPIO and MOF	0.005–1	0.0013	This work

References

- 1 N. Ben Messaoud, A. Ait Lahcen, C. Dridi and A. Amine, *Sensor. Actuat. B-Chem.*, 2018, **276**, 304-312.
- 2 D. N. Pei, A. Y. Zhang, X. Q. Pan, Y. Si and H. Q. Yu, *Anal. Chem.*, 2018, **90**, 3165-3173.
- 3 Y. Xiong, Q. Wang, M. Duan, J. Xu, J. Chen and S. Fang, *Polymers-Basel*, 2018, **10**, 780.
- 4 X. Zhang, S. Yang, W. Chen, Y. Li, Y. Wei and A. Luo, *Polymers-Basel*, 2019, **11**, 1210.
- 5 M.-K. Li, L.-Y. Hu, C.-G. Niu, D.-W. Huang and G.-M. Zeng, *Sensor. Actuat. B-Chem.*, 2018, **266**, 805-811.
- 6 L. Hu, C. C. Fong, X. Zhang, L. L. Chan, P. K. Lam, P. K. Chu, K. Y. Wong and M. Yang, *Environ. Sci. Technol.*, 2016, **50**, 4430-4438.
- Z. Xu, H. Kuang, W. Yan, C. Hao, C. Xing, X. Wu, L. Wang and C. Xu, *Biosens. Bioelectron.*, 2012, 32, 183-187.