Synergistic effect of carotenoid and silicone-based additives for photooxidatively stable organic solar cells with enhanced elasticity

Michela Prete^a, Elisa Ogliani^b, Mikkel Bregnhøj^c, Jonas Sandby Lissau^a, Subham Dastidar^d, Horst-Günter Rubahn^a, Sebastian Engmann^{e,f}, Anne Ladegaard Skov^b, Michael A. Brook^g, Peter R. Ogilby^c, Adam Printz^{*d}, Vida Turkovic^{*a} and Morten Madsen^{*a}

Concentration optimization of additives

Device	V _{oc} [V]	J _{sc} [mA/cm²]	FF [%]	PCE [%]	
PTB7:[70]PCBM + PDMS					
РТВ7:[70]РСВМ	0.74±0.01	13.1±0.3	65.7±4.1	6.3±0.3	
PTB7:[70]PCBM + 3 wt% PDMS	0.72±0.01	10.4±0.3	64.9±2.1	4.9±0.2	
PTB7:[70]PCBM + 1.5 wt% PDMS	0.73±0.01	13.0±0.2	67.1±5.0	6.3±0.4	
PTB7:[70]PCBM + 0.3 wt% PDMS	0.74±0.01	12.9±0.4	47.5±3.0	4.6±0.4	
PTB7:[70]PCBM + 0.03 wt% PDMS	0.71±0.01	13.0±0.3	68.9±5.8	6.4±0.5	
<u> PTB7:[70]PCBM + AX</u>					
РТВ7:[70]РСВМ	0.72±0.01	13.3±0.5	67.5±1.4	6.4±0.1	
PTB7:[70]PCBM + 20 wt% AX	0.65±0.05	6.0±0.1	47.6±2.1	1.9±0.1	
PTB7:[70]PCBM + 10 wt% AX	0.62±0.04	7.0±0.4	46.3±7.6	2.0±0.4	
PTB7:[70]PCBM + 3 wt% AX	0.70±0.04	10.6±0.7	60.0±5.0	4.5±0.6	
PTB7:[70]PCBM + 0.3 wt% AX	0.70±0.03	11.7±0.3	63.9±1.8	5.3±0.2	
PTB7:[70]PCBM + 0.03 wt% AX	0.73±0.01	13.2±0.2	61.7±4.6	6.0±0.5	

Supplementary 1. Photovoltaic parameters from the optimization process of the PTB7:[70]PCBM devices with and without the tested PDMS and AX additives. Standard deviation calculated on at least six devices.

Lifetime measurements

The long-term stability of the devices in Figure 3 is quantified using a bi-exponentially decaying function, with time constants t_1 and t_2 and corresponding initial PCE contributions A_1 and A_2 , to characterize the initial fast and ensuing slow degradation components, respectively(1):

$$PCE(t) = y_0 + A_1 e^{-\frac{t}{t_1}} + A_2 e^{-\frac{t}{t_2}}$$

To evaluate the kinetics of the stabilizing effect of the tested additives, $t_{burn-in}$ and $t_{lifetime}$ were extracted from the bi-exponentially fitted curves.(2)_The initial period of fast decay is referred to as $t_{burn-in}$, calculated analytically as(3):

$$t_{burn-in} = \frac{t_1 t_2}{t_1 - t_2} ln \left(\frac{A_2 t_1}{A_1 t_2} \right)$$

The fast burn-in decay is followed by a slower degradation process, characterized by t_{lifetime} , which is defined as the time at which a further 20% reduction in performance has occurred with respect to the efficiency at the end of the burn-in period.

			PTB7:[70]PCBM		
		PTB7:[70]PCBM	+	PTB7:[70]PCBM	PTB7:[70]PCBM
		+ 3 wt% AX	3 wt% AX + 1.5	+ 0.3 wt%	+ 0.03 wt%
			wt% PDMS	AXcPDMS	AXcPDMS
y o	0,07 ± 0.00	0,05 ± 0,00	0,00 ± 0,00	0,26 ± 0,00	0,24 ± 0,01
A ₁	7,06 ± 0,03	3,94 ± 0,04	4,08 ± 0,03	3,75 ± 0,05	4,86 ± 0,04
t ₁ (h)	0,62 ± 0,01	0,98 ± 0,02	0,84 ± 0,01	1,10 ± 0,02	0,88 ± 0,01
A ₂	1,39 ± 0,02	1,12 ± 0,02	0,99 ± 0,00	1,87 ± 0,02	1,66 ± 0,01
t ₂ (h)	6,19 ± 0,07	12,27 ± 0,18	34,34 ± 0,40	12,68 ± 0,20	20,04 ± 0,30

Supplementary 2. Fitting parameters and standard errors based on fit statistics for data presented in Table 2.

Singlet Oxygen Phosphorescence

Supplementary 3. Time-resolved singlet oxygen phosphorescence signals recorded from PTB7:[70]PCBM films with different additives from Figure 4, zoomed in on the short timescales

PL measurements

The PL peak positions of PTB7:[70]PCBM blend films, and the pristine PTB7 and [70]PCBM films, are identified as the center position (x_0) of the Gaussian fits of the PL spectra.

Supplementary 4 Photoluminescence (PL) spectrum of pure PTB7 and [70]PCBM films.

PTB7

			Value	Standard Error	t-Value	Prob> t	Dependency
	y0	Base	0.7201	0.15752	4.57145	5.13019E-6	0.34604
Photoluminescence	хс	center	803.33819	0.3207	2504.97615	0	6.65501E-5
Intensity	А	area	14350.81146	83.76947	171.31314	0	0.56416
	w	FWHW	138.55017	0.81912	169.14551	0	0.43342

PCBM70

			Value	Standard Error	t-Value	Prob> t	Dependency
	y0	Base	2.3259	0.10042	23.16257	1.06504E-105	0.17745
Photoluminescence	хс	center	739.59727	0.45722	1617.61341	0	2.03938E-5
Intensity	А	area	2680.51761	38.51419	69.59819	0	0.45168
	w	FWHW	71.55324	1.11472	64.18952	0	0.3781

PTB7:PCBM70

			Value	Standard Error	t-Value	Prob> t	Dependency
	y0	Base	44.36205	1.09594	40.47854	3.26089E-264	0.13587
Photoluminescence	хс	center	740.29847	0.30593	2419.79266	0	1.19423E-5
Intensity	А	area	30014.72361	367.75766	81.6155	0	0.42394
	w	FWHW	54.77741	0.73907	74.11699	0	0.36656

PTB7:PCBM70 + 3 wt% AX

			Value	Standard Error	t-Value	Prob> t	Dependency
	y0	Base	52.74597	0.87032	60.60499	0	0.0908
Photoluminescence	хс	center	743.53511	0.23036	3227.7406	0	5.28427E-6
Intensity	А	area	17724.86594	238.64748	74.27217	0	0.39388
	w	FWHW	36.59224	0.55141	66.36131	0	0.35482

PTB7:PCBM70 + 0.03 wt% AXcPDMS

			Value	Standard Error	t-Value	Prob> t	Dependency
Photoluminescence Intensity	y0	Base	39.67597	1.15226	34.43324	1.06756E- 205	0.1332
	хс	center	740.42442	0.3165	2339.4495	0	1.1474E-5
	А	area	29653.17995	382.82703	77.45843	0	0.42216
	w	FWHW	53.69889	0.76415	70.27307	0	0.36584

Supplementary 5 Photoluminescence (PL) spectrum parameters of PTB7:[70]PCBM films for selected additive combinations

Solubility and Interaction parameters

Numerous reports have employed the Flory-Huggins interaction parameter (χ_{12}) to evaluate the miscibility between molecules in active layer blends.(4–6) The interaction parameter can be calculated as:

$$\chi_{12} = \frac{v_0}{RT} (\delta_1 - \delta_2)^2 \tag{1}$$

where v_0 is the lattice site volume, δ_1 and δ_2 are the Hildebrand solubility parameters of the two compounds, R is the ideal gas constant, and T temperature. The Hildebrand parameters were determined using Hansen solubility parameters (HSP) obtained from literature.

The site volume v_0 in equation (1) must be specified whenever discussing the interaction parameter as it is defined in terms of energy per site. When v_0 is fixed in equation (1), the value of $(\delta_1 - \delta_2)^2$ is proportional to the interaction parameter χ_{12} which is directly correlated to the miscibility of the two compounds.(4,7)

	δ _d (MPa ^{1/2})	δ _p (MPa ^{1/2})	δ _h (MPa ^{1/2})	δ _т (MPa ^{1/2}) ^e	$(\delta_{T1} - \delta_{T2})^2$ (MPa) ^f
[70]PCBM ^a	19,8	4,0	4,6	20,7	-
PTB7 ^b	21,1	2,2	5,9	22,0	-
PDMS ^c	14,9	0,4	0,8	14,9	-
AX ^d	18,3	4,0	4,4	19,2	-
[70]PCBM/PDMS	-	-	-	-	33,5
[70]PCBM/AX	-	-	-	-	2,2
[70]PCBM/PTB7	-	-	-	-	1,6
PTB7/PDMS	-	-	-	-	49,7
PTB7/AX	-	-	-	-	7,5
PDMS/AX	-	-	-	-	18,6

Supplementary 6 Hansen solubility parameters (δ_d , δ_p , δ_h), Hildebrandt solubility parameter (δ_T) of the donor, acceptor and additive molecules, and an estimate of the interaction parameters ($(\delta_{TI} - \delta_{T2})^2$) between them. a: values from (5); b: values from (6); c: values from (8); d: values from HSPIP software; f: Hildebrandt solubility parameter calculated as $\delta_T = \sqrt{\delta_d^2 + \delta_p^2 + \delta_h^2}$; e:

Interaction parameters estimated according to procedure in (4).

Mechanical testing

Blending brittle with ductile polymers can significantly improve the ductility of the organic devices made thereof.(9) The plasticizing polymeric additive is present in the active layers at very low loadings, thus the observed improved flexibility cannot be explained in terms of a simple weighed sum of the E_f of the active layer and the additive.(10)

We proposed that the observed improvement in flexibility of AX containing active layers, occurs due to a reduction in [70]PCBM aggregation in the presence of AX, which preferentially mixes with PCBM (see Supplementary 5) and also possibly forms hydrogen bonds with the PTB7 molecules.(11) The presence of PDMS in such blends interferes with the proposed mechanism, however when AX covalently bound to PDMS is added the beneficial effect can be reestablished.

Observing the cohesive fracture within the active layer (see Supplementary 6), the position of fracture will highly deviate from the reference active layers in the presence of PDMS alone, and PDMS blended with AX, where the fracture will occur at the interface to the bottom aluminum side, as well as in the presence of the higher loading of AXcPDMS, where the fracture will occur at the interface to the top glass side. We speculate that the reasons for this can be found in the presence of PDMS which does not mix well with the active layer

molecules but instead segregates on its edge, which then facilitates a fracture. At lower loadings of AXcPDMS the amount of PDMS is much lower, and as such allows better blending with the active layer molecules, thus resulting in a similar fracture position.

Cohesive fracture measurements

Supplementary 7 X-ray Photoelectron Spectroscopy of the delaminated samples for both sides. Blue line indicating the film side and Black line indicating the metal side.

Elastic modulus

Thickness (nm)	PTB7:PCBM70		PTB7:P +3%	CBM70 6AX	PTB7:P +1.5%	CBM70 PDMS	PTB7:P %AX+1	CBM70+3 .5%PDMS	РТВ7 0+0.3	:PCBM7 BAXcPD MS	PTB7:P 0.03A	CBM70+ KcPDMS
rad/s	Mean	Stdev	Mean	Stdev	Mean	Stdev	Mean	Stdev	Mean	Stdev	Mean	Stdev
600	142.5	4.9	131.0	4.9	117.8	1.5	121.8	1.5	96.9	3.9	151.9	5.8
1000	116.3	5.0	99.2	4.1	97.4	5.0	95.8	3.9	66.9	1.6	113.2	3.6
3000	82.1	3.9	68.4	4.9	64.2	3.0	63.9	2.2	42.0	1.9	65.1	3.6

Supplementary 8. Thickness measurements of OPV films at different spin speeds (600 rad/s, 1000 rad/s and 3000 rad/s).

New additive molecule

Supplementary 9 1H NMR spectrum of the product AXcPDMS.

Supplementary 10 a) UV-vis detected GPC traces of free astaxanthin, DMS-Z21, and AXcPDMS (λ = 480 nm). b) UV-vis spectra of AXcPDMS and free astaxanthin. λ_{max} ASTA (in a mixture isopropanol/THF, due to the very poor solubility of ASTA in isopropanol) = 474 nm; λ_{max} PDMS/ASTA (in isopropanol) = 476 nm

References

- Krebs FC, Carlé JE, Cruys-Bagger N, Andersen M, Lilliedal MR, Hammond MA, et al. Lifetimes of organic photovoltaics: Photochemistry, atmosphere effects and barrier layers in ITO-MEHPPV: PCBM-aluminium devices. Sol Energy Mater Sol Cells. 2005 Apr 1;86(4):499–516.
- Peters CH, Sachs-Quintana IT, Kastrop JP, Beaupré S, Leclerc M, McGehee MD. High Efficiency Polymer Solar Cells with Long Operating Lifetimes. Adv Energy Mater [Internet]. 2011 Jul 1 [cited 2021 Mar 11];1(4):491–4. Available from: http://doi.wiley.com/10.1002/aenm.201100138
- Turkovic V, Engmann S, Tsierkezos N, Hoppe H, Ritter U, Gobsch G. Long-term stabilization of organic solar cells using hindered phenols as additives. ACS Appl Mater Interfaces. 2014;6(21):18525–18537.
- 4. Zhang C, Langner S, Mumyatov A V., Anokhin D V., Min J, Perea JD, et al. Understanding the correlation and balance between the miscibility and optoelectronic properties of polymer-fullerene solar cells. J Mater Chem A [Internet]. 2017 Aug 22 [cited 2021 Feb 18];5(33):17570–9. Available from: https://pubs.rsc.org/en/content/articlehtml/2017/ta/c7ta03505e
- Leman D, Kelly MA, Ness S, Engmann S, Herzing A, Snyder C, et al. In situ characterization of polymer-fullerene bilayer stability. Macromolecules [Internet]. 2015 Jan 27 [cited 2021 Feb 18];48(2):383–92. Available from: https://pubs.acs.org/doi/abs/10.1021/ma5021227
- Manley EF, Strzalka J, Fauvell TJ, Jackson NE, Leonardi MJ, Eastham ND, et al. In Situ GIWAXS Analysis of Solvent and Additive Effects on PTB7 Thin Film Microstructure Evolution during Spin Coating. Adv Mater [Internet]. 2017 Nov 20 [cited 2021 Feb 18];29(43):1703933. Available from: http://doi.wiley.com/10.1002/adma.201703933

- Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun [Internet]. 2014 Nov 10 [cited 2021 Feb 18];5(1):1–8. Available from: www.nature.com/naturecommunications
- 8. Van Krevelen DW, Te Nijenhuis K. Cohesive Properties and Solubility. In: Properties of Polymers. Elsevier; 2009. p. 189–227.
- Scott JI, Xue X, Wang M, Kline RJ, Hoffman BC, Dougherty D, et al. Significantly Increasing the Ductility of High Performance Polymer Semiconductors through Polymer Blending. ACS Appl Mater Interfaces [Internet]. 2016 Jun 8 [cited 2021 Apr 2];8(22):14037–45. Available from: https://pubs.acs.org/doi/abs/10.1021/acsami.6b01852
- Awartani O, Lemanski BI, Ro HW, Richter LJ, DeLongchamp DM, O'Connor BT. Correlating Stiffness, Ductility, and Morphology of Polymer:Fullerene Films for Solar Cell Applications. Adv Energy Mater [Internet]. 2013 Mar 1 [cited 2021 Feb 18];3(3):399–406. Available from: http://doi.wiley.com/10.1002/aenm.201200595
- 11. Cheng P, Yan C, Lau TK, Mai J, Lu X, Zhan X. Molecular Lock: A Versatile Key to Enhance Efficiency and Stability of Organic Solar Cells. Adv Mater. 2016;28(28):5822–9.