Supporting Information for

Four-Step Thermosensitive Dielectric Response Arising from Motionable Low-Symmetry Ammonium Confined in Deformable Supramolecular Cages

Zhi-Hui Jia,^a Jing-Yan Liu,^b De-Xuan Liu,^c Shi-Yong Zhang,^b Zi-Yi Du,^{*a} Chun-Ting He,^{*a} Wei-Xiong Zhang,^{*c} and Xiao-Ming Chen^c

^aCollege of Chemistry and Chemical Engineering, MOE Key Laboratory of Functional Small Organic Molecule, Jiangxi Normal University, Nanchang 330022, China.

^bCollege of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.

^cSchool of Chemistry, MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.

*Correspondence to: Zi-Yi Du, E-mail: ziyidu@gmail.com. Chun-Ting He, E-mail: hct@jxnu.edu.cn.

Wei-Xiong Zhang, E-mail: <u>zhangwx6@mail.sysu.edu.cn</u>.

Index

Table S1 Summary of crystal data and structural refinement for 1 at the three phases

Table S2 Selected bond lengths (Å) for 1 at the three phases

Table S3 The S…S contacts (Å) in **1** at the three phases

Table S4 The fitting parameters of the doubly superimposed Havriliak–Negami equation for **1** at specific temperatures

Chart S1 Evolution of the supramolecular cage types with variable free volumes in the four phases of 1

Fig. S1 Room-temperature powder XRD patterns of 1

Fig. S2 Final Rietveld refinement result for 1λ phase at 393 K

Fig. S3 Thermogravimetric curve of 1

Fig. S4 In situ above-room-temperature DSC measurement for 1 recorded on variable heating/cooling rates of 1, 3, 5 and 10 K/min, respectively.

Fig. S5 ORTEP representations of the selected unit of 1 at 120 K (a), 180 K (b), and 296 K (c), respectively. For comparison, the overlay map of the $[Ni(NCS)_6]^{4-}$ anions in three phases is shown in (d)

Fig. S6 View of the overall stacking of 1λ phase

Fig. S7 Comparison of the room-temperature supramolecular $\{[Ni(NCS)_6]^{4-}\}_{\infty}$ layers in $(Me_3NH)_4[Ni(NCS)_6]$ (a) and $\mathbf{1\gamma}$ (b). From $\mathbf{\gamma}$ to $\mathbf{\lambda}$ phase, the $\{[Ni(NCS)_6]^{4-}\}_{\infty}$ layer is broken and the $[Ni(NCS)_6]^{4-}$ anions turn disordered dynamically. The significantly changed geometric arrangement of the $[Ni(NCS)_6]^{4-}$ anions is shown in (c) **Fig. S8** Views of the overall stacking of $\mathbf{1\gamma}$ (a), $\mathbf{1\beta}$ (b) and $\mathbf{1\alpha}$ phases (c), respectively

Fig. S9 Views of the stacking of the supramolecular layers of $[Ni(NCS)_6]^{4-}$ anions in $\mathbf{1\beta}$ phase down the a-axis.

The N5-, N6- and N7-containing Me_2EtNH^+ ions reside in the supramolecular cages C, D and E, respectively

Fig. S10 Views of the stacking of the supramolecular layers of $[Ni(NCS)_6]^{4-}$ anions in **1** α phase down the *a*-axis.

The N7-, N8-, N9- and N10-containing Me_2EtNH^+ ions reside in the supramolecular cages F, G, H and I, respectively

Fig. S11 Local snapshots of NVT dynamic simulations at 120 K for N7-containing Me₂EtNH⁺ ion in 1α phase over the simulation time (a-g), and the overlapping maps of these snapshots (h)

Fig. S12 Local snapshots of NVT dynamic simulations at 120 K for N8-containing Me₂EtNH⁺ ion in 1α phase over the simulation time (a-g), and the overlapping maps of these snapshots (h)

Fig. S13 Local snapshots of NVT dynamic simulation at 120 K for N9-containing Me₂EtNH⁺ ion in $\mathbf{1}\alpha$ phase over the simulation time (a-g), and the overlapping maps of these snapshots (h)

Fig. S14 Local snapshots of NVT dynamic simulation at 120 K for N10-containing Me₂EtNH⁺ ion in 1α phase over the simulation time (a-g), and the overlapping maps of these snapshots (h)

Fig. S15 Local snapshots of NVT dynamic simulation at 180 K for N5-containing Me₂EtNH⁺ ion in $\mathbf{1\beta}$ phase over the simulation time (a-g), and the overlapping maps of these snapshots (h)

Fig. S16 Local snapshots of NVT dynamic simulation at 180 K for N6-containing Me₂EtNH⁺ ion in **1** β phase over the simulation time (a-g), and the overlapping maps of these snapshots (h)

Fig. S17 Local snapshots of NVT dynamic simulation at 180 K for N7-containing Me₂EtNH⁺ ion in **1** β phase over the simulation time (a-g), and the overlapping maps of these snapshots (h)

Fig. S18 Local snapshots of NVT dynamic simulation at 300 K for N3-containing Me₂EtNH⁺ ion in $\mathbf{1}\gamma$ phase over the simulation time (a-g), and the overlapping maps of these snapshots (h)

Fig. S19 Local snapshots of NVT dynamic simulation at 300 K for N4-containing Me₂EtNH⁺ ion in $\mathbf{1\gamma}$ phase over the simulation time (a-g), and the overlapping maps of these snapshots (h)

Fig. S20 Overlapping maps of the snapshots for one $[Ni(NCS)_6]^{4-}$ anion (a) and two N3-containing Me₂EtNH⁺ ions (b, c), respectively, by first-principles NVT dynamic simulation of **1** λ phase at simulation temperature of 573 K, showing orientation changes and short-range displacements over the simulation time of 0, 2, 4, 6, 8, and 10 ps

Fig. S21 The variable-temperature Cole–Cole plots as a series of arcs shown the relationship between ε ' and ε ''. Based on the obtained fitting parameters, the fitted Cole–Cole diagrams of two separated relaxation processes 1 and 2 are illustrated in the inset map

Fig. S22 Variable-temperature impedance spectra for the polycrystalline pellet of 1

Fig. S23 Variable-temperature infrared spectra of 1

Temperature (K)	120(2)	180(2)	296(2)		
Empirical formula	$C_{22}H_{48}N_{10}S_6Ni_1$				
Formula weight		703.77			
Phase	α	β	γ		
Space group ^[a]	P21/n	Pbnm	Acam		
a (Å)	12.783(3)	12.8756(3)	12.9430(7)		
b (Å)	14.478(3)	14.5845(3)	15.0014(8)		
<i>c</i> (Å)	19.285(4)	19.1455(4)	19.3631(11)		
β/deg	90.207(6)	90	90		
V/Å ³	3569.0(14)	3595.22(13)	3759.6(4)		
Z	4	4	4		
$D_{calcd}/g \text{ cm}^{-3}$	1.310	1.300	1.243		
µ/mm⁻¹	0.924	0.917	0.877		
GOF on F ²	1.069	1.044	1.050		
$R_1, wR_2 [l > 2\sigma(l)]^{[b]}$	0.0508, 0.1026	0.0484, 0.1280	0.0569, 0.1624		
R_1 , wR_2 (all data)	0.0699, 0.1150	0.0540, 0.1309	0.0816, 0.1836		

Table S1 Summary of crystal data and structural refinement for 1 at three phases

^[a]To straightly compare the corresponding cell parameters, non-standard space groups for them were adopted here.

 ${}^{[b]}R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|, \ wR_2 = \{\sum w[(F_0)^2 - (F_c)^2]^2 / \sum w[(F_0)^2]^2 \}^{1/2}$

Table S2 Selected bond lengths ((Å	() for 1	at three	phases
----------------------------------	----	-----------------	----------	--------

a phase at 120 K							
u pilase at 120 K							
Ni(1)–N(6)	2.064(4)	Ni(1)–N(5)	2.070(4)				
Ni(1)–N(3)	2.081(4)	Ni(1)–N(4)	2.086(4)				
Ni(1)–N(6)	2.094(3)	Ni(1)–N(6)	2.115(3)				
$oldsymbol{eta}$ phase at 180 K							
Ni(1)–N(2)	2.064(2)	Ni(1)-N(1)	2.083(2)				
Ni(1)–N(3)	2.093(2)	Ni(1)–N(4)	2.106(2)				
γ phase at 296 K							
Ni(1)–N(2)	2.078(3)	Ni(1)-N(1)	2.113(4)				

α phase at 120 K							
S(3)…S(6)#1	3.462(2)	S(4)…S(5)#2	3.536(2)				
S(1)…S(2)#3	3.594(2)						
β phase at 180 K							
S(2)…S(3)#4	3.553(1)	S(1)…S(4)#3	3.611(1)				
γ phase at 296 K							
S(2)…S(2)#5	3.573(2)	S(1)…S(1)#6	3.632(2)				

Table S3 The S…S contacts (Å) in 1 at three phases

Symmetry code: #1. 1/2 + x, 3/2 - y, -1/2 + z; #2. 1/2 + x, 3/2 - y, 1/2 + z; #3. 1 + x, y, z; #4. x, 1 + y, z; #5. 3/2 - x, y, 1/2 - z; #6. 2 - x, 1 - y, 1 - z.

Table S4 The fitting parameters of the doubly superimposed Havriliak–Negami equation for **1** at specific temperatures

<i>Т</i> (К)	€∞	α_1	$\boldsymbol{\beta}_1$	$\Delta \varepsilon_1$	τ _{0,1} (s)	α2	β2	$\Delta \varepsilon_2$	τ _{0,2} (s)	$\sigma_{\sf dc}$
263	4.78	0	0.79	3.00	7.0 × 10 ⁻⁷	-		-	-	-
273	4.71	0	0.73	3.04	4.2 × 10 ⁻⁷	0	0.67	0.53	1.2×10^{-2}	4.4×10^{-11}
283	4.64	0	0.68	3.10	2.4 × 10 ⁻⁷	0	0.66	0.76	8.6 × 10 ⁻³	5.5 × 10 ⁻¹⁰
293	4.54	0	0.63	3.21	1.6×10^{-7}	0	0.65	1.08	6.4×10^{-3}	1.5 × 10 ⁻⁹
303	4.42	0	0.57	3.34	1.0×10^{-7}	0	0.65	1.63	4.5 × 10 ⁻³	3.8 × 10 ⁻⁹
313	4.30	0	0.49	3.49	7.0 × 10 ⁻⁸	0	0.64	2.49	3.3 × 10 ⁻³	9.5 × 10 ⁻⁹

Chart S1 Evolution of the supramolecular cage types with variable free volumes (using a probe radius set as 2.4 Å) in the four phases of **1**.

Fig. S1 Room-temperature powder XRD patterns of 1.

Fig. S2 Final Rietveld refinement result for 1λ phase at 393 K.

Fig. S4 In situ above-room-temperature DSC measurement for **1** recorded on variable heating/cooling rates of 1, 3, 5 and 10 K/min, respectively.

Fig. S5 ORTEP representations of the selected unit of 1 at 120 K (a), 180 K (b), and 296 K (c), respectively, with symmetry breaking and increasing thermal vibration amplitude. For the disordered Me₂EtNH⁺ ions in (b) and (c), only one orientation is shown for clarity. For comparison, the overlay map of the $[Ni(NCS)_6]^{4-}$ anions in three phases is shown in (d), shaded in grey (120 K), purple (180 K), and green (296 K), respectively. Symmetry codes: A) x, y, 1/2 - z; B) 1 - x, 1 - y, z; C) x, y, 1 - z; D) 1 - x, 1 - y, 1 - z.

Fig. S6 View of the overall stacking in 1λ phase. The disordered Me₂EtNH⁺/[Ni(NCS)₆]⁴⁻ ions are shaded in transparent. The N4-containing Me₂EtNH⁺ ions reside in the supramolecular cage *J*. For display details, see Fig. 2.

Fig. S7 Comparison of the room-temperature supramolecular $\{[Ni(NCS)_6]^{4-}\}_{\infty}$ layers in $(Me_3NH)_4[Ni(NCS)_6]$ (a) and γ (b). The S…S contacts are represented by dashes. From 1γ to 1λ , the supramolecular $\{[Ni(NCS)_6]^{4-}\}_{\infty}$ layer is broken and the $[Ni(NCS)_6]^{4-}$ anions turn disordered dynamically. The significantly changed geometric arrangement of the $[Ni(NCS)_6]^{4-}$ anions is shown in (c).

Fig. S8 Views of the overall stacking of 1γ (a), 1β (b) and 1α phases (c), respectively. The disordered Me₂EtNH⁺ ions are shaded in transparent.

Fig. S9 Views of the stacking of the supramolecular layers of $[Ni(NCS)_6]^{4-}$ anions in **1** β phase (180 K) down the *a*-axis. The N5-, N6- and N7-containing Me₂EtNH⁺ ions reside in the supramolecular cages *C*, *D* and *E*, respectively. For display details, see Fig. 2.

Fig. S10 Views of the stacking of the supramolecular layers of $[Ni(NCS)_6]^{4-}$ anions in **1** α phase (120 K) down the *a*-axis. The N7-, N8-, N9- and N10-containing Me₂EtNH⁺ ions reside in the supramolecular cages *F*, *G*, *H* and *I*, respectively. For display details, see Fig. 2.

Fig. S11 Local snapshots of NVT dynamic simulation at 120 K for N7-containing Me₂EtNH⁺ ion in $\mathbf{1a}$ phase over the simulation time (a-g), and the overlapping maps of these snapshots (h). All C-bound H atoms are omitted for clarity.

Fig. S12 Local snapshots of NVT dynamic simulation at 120 K for N8-containing Me₂EtNH⁺ ion in 1α phase over the simulation time (a-g), and the overlapping maps of these snapshots (h).

Fig. S13 Local snapshots of NVT dynamic simulation at 120 K for N9-containing Me₂EtNH⁺ ion in $\mathbf{1}\alpha$ phase over the simulation time (a-g), and the overlapping maps of these snapshots (h).

Fig. S14 Local snapshots of NVT dynamic simulation at 120 K for N10-containing Me₂EtNH⁺ ion in 1α phase over the simulation time (a-g), and the overlapping maps of these snapshots (h).

Fig. S15 Local snapshots of NVT dynamic simulation at 180 K for N5-containing Me₂EtNH⁺ ion in **1** β phase over the simulation time (a-g), and the overlapping maps of these snapshots (h).

Fig. S16 Local snapshots of NVT dynamic simulation at 180 K for N6-containing Me₂EtNH⁺ ion in **1** β phase over the simulation time (a-g), and the overlapping maps of these snapshots (h).

Fig. S17 Local snapshots of NVT dynamic simulation at 180 K for N7-containing Me₂EtNH⁺ ion in **1** β phase over the simulation time (a-g), and the overlapping maps of these snapshots (h).

Fig. S18 Local snapshots of NVT dynamic simulation at 300 K for N3-containing Me₂EtNH⁺ ion in $\mathbf{1}\gamma$ phase over the simulation time (a-g), and the overlapping maps of these snapshots (h).

Fig. S19 Local snapshots of NVT dynamic simulation at 300 K for N4-containing Me₂EtNH⁺ ion in $\mathbf{1}\gamma$ phase over the simulation time (a-g), and the overlapping maps of these snapshots (h).

Fig. S20 Overlapping maps of the snapshots for one $[Ni(NCS)_6]^{4-}$ anion (a) and two N3-containing Me₂EtNH⁺ ions (b, c), respectively, by first-principles NVT dynamic simulation of **1** λ phase at simulation temperature of 573 K, showing orientation changes and short-range displacements over the simulation time of 0, 2, 4, 6, 8, and 10 ps.

Fig. S21 The variable-temperature Cole–Cole plots as a series of arcs shown the relationship between ε ' and ε ''. Based on the obtained fitting parameters, the fitted Cole–Cole diagrams of two separated relaxation processes 1 and 2 are illustrated in the inset map.

Fig. S22 Variable-temperature impedance spectra for the polycrystalline pellet of **1** in the temperature range from 293 to 395 K.

Fig. S23 Variable-temperature infrared spectra of 1 in the temperature range from 298 to 388 K.