Supporting Information

Interpenetrating PAA-PEDOT Conductive Hydrogels for

Flexible Skin Sensors

Fanfan Fu,¹ Jilei Wang,¹ Jing Yu*¹

¹School of Materials Science and Engineering, Nanyang Technological University, 639798,

Singapore. *E-mail: yujing@ntu.edu.sg (J. Yu)

Fig. S1. The images of PAA-PEDOT hydrogels with different PAA concentrations. From left to right, the concentrations of PAA were 15% (wt.), 30% (wt.), and 45% (wt.), respectively.

Fig. S2. Adhesion force of PAA hydrogel on human skin, glass substrate, and metal (iron) substrate.

Fig. S3. SEM images of PAA and PAA-PEDOT hydrogels. (a) SEM image of the surface of a PAA hydrogel. (b-d) SEM image of the surface of PAA-PEDOT hydrogels with different electronical deposition times. From left to right, the electronical deposition times were 1 min, 5 min, and 10 min, respectively.

Fig. S4. Schematic of the generation process of crumpled rGO/Pt template.

Fig. S5. The selectivity performances of K⁺ sensor in different ionic solution.

Fig. S6. The stability performances of the PAA-PEDOT-based sensors in Na⁺ (50 mM, 120 mM) and K⁺ (5 mM, 8 mM) ionic solution for 30 min.

Fig. S7. The multicycle stability performances of the PAA-PEDOT-based sensors in Na⁺ (50 mM, 120 mM) and K⁺ (5 mM, 8 mM) ionic solution for 2 hours.