The influence of Sc substitution on the crystal structure and scintillation properties of LuBO₃:Ce³⁺ based on combinatorial material chip and highthroughput XRD

Shan-Shan Liang^a, Meng Huang^a, Yu Wang^a, Qian-Li Li^a, Xin-Xin Yang^a, Jing-Tai Zhao^b, Xing-Yu Gao^c, Guang-Zhi Yin^c, Qian Liu^d, Zhi-Jun Zhang^a*

^a School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.

E-mail: zhangzhijun@shu.edu.cn

^b School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China.

^c Chinese Academy of Science, Shanghai Advance Research Institute, SSRF, Shanghai,
200120, China.

^d Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

KEYWRODS: combinatorial material technology, LuBO₃:Ce, scandium, highthroughput XRD, scintillation.

Fig. S1. Rietveld refinement patterns of LSBO:Ce for x = 0.1 (a), x = 0.2 (b), x = 0.6 (c) and x = 0.8 (d).

Fig. S2 FT - IR spectra of LSBO:Ce (x = 0 - 0.9).

Fig. S3 Energy between the lowest 5d and 4f energy levels of LSBO:Ce.

Fig. S4 SEM image of the LSBO:Ce @ PMMA scintillation screen with 7 wt% content of LSBO:Ce, the inset shows a single particle.