Electronic supplementary information

Complementary effect of co-doping aliovalent elements Bi and Sb in self-compensated SnTe-based thermoelectric materials

Samuel Kimani Kihoi, a U. Sandhya Shenoy, b D. Krishna Bhat, c and Ho Seong

Lee^{a,*}

 ^a School of Materials Science and Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
^b Department of Chemistry, College of Engineering and Technology, Srinivas University, Mukka -574146, Mangalore, Karnataka, India
^c Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Srinivasnagar -575025, Mangalore, Karnataka, India

Sample	Density (g/cm ³)
SnTe	6.4239
Sn _{1.03} Te	6.4350
SnBi _{0.03} Te	6.4987
$Sn_{0.94}Bi_{0.03}Sb_{0.06}Te$	6.4624
$Sn_{0.92}Bi_{0.03}Sb_{0.08}Te$	6.4553
$Sn_{0.90}Bi_{0.03}Sb_{0.10}Te$	6.4631
$Sn_{0.88}Bi_{0.03}Sb_{0.12}Te$	6.4660
$Sn_{0.86}Bi_{0.03}Sb_{0.14}Te$	6.4449

Table S1 Measured densities for the $Sn_{1.03-x-y}Bi_xSb_yTe$ compositions

Fig. S1. Temperature dependent Lorenz number for the $Sn_{1.03-x-y}Bi_xSb_yTe$ compositions.

Fig. S2. pDOS of $Sn_{15}SbTe_{16}$. Energies are shifted with respect to Fermi level which is set to zero. Resonance states appear in the form of increased DOS near the Fermi level.

Fig. S3. SEM BSE images for the (a) $Sn_{1.03}$ Te and (d) $SnBi_{0.03}$ Te compositions and respective EDS mapping.

Fig. S4. SEM BSE images for the $Sn_{0.86}Bi_{0.03}Sb_{0.14}Te$ composition and respective EDS mapping.

Fig. S5. HRTEM image for the $Sn_{0.86}Bi_{0.03}Sb_{0.14}$ Te composition showing lattice spacing for the SnTe (220) plane and a layered structuring bound by the orange lines.

Lattice parameter calculation

The lattice parameter for all compositions shown in this were extracted from the XRD data. From Bragg's law:

$$\lambda = 2dsin\theta \tag{S1}$$

Where λ is the wavelength for the x-ray radiation (1.5406 Å), *d* is the inter planar distance and θ is the diffraction angle obtained from XRD as $2\theta/2$.

For a cubic crystal system:

$$\frac{1}{d^2} = \frac{(h^2 + k^2 + l^2)}{a^2}$$
(S2)

Where d is the previously calculated inter planar distance from XRD data, *hkl* are the Miller indices of a diffraction plane and *a* is the lattice parameter to be determined.

Calculation of sound velocity

The plane acoustic longitudinal (V_l) and transverse (V_t) velocities of all compositions were estimated in the [100], [110], and [111] crystal orientations using elastic constants of SnTe $(C_{ij})^1$ and the measured density (ρ) as explained below.²

For wave propagating in the [100] direction:

$$V_l = \sqrt{C_{11}/\rho} \tag{S3}$$

$$V_t = \sqrt{C_{44}/\rho} \tag{S4}$$

For wave propagating in the [110] direction:

$$V_l = \sqrt{(C_{11} + C_{12} + C_{44})/2\rho}$$
(S5)

$$V_{t1} = \sqrt{(C_{11} - C_{12})/2\rho}$$
(S6)

$$V_{t2} = \sqrt{C_{44}/\rho} \tag{S7}$$

For wave propagating in the [111] direction:

$$V_l = \sqrt{(C_{11} + 2C_{12} + 4C_{44})/3\rho}$$
(S8)

$$V_t = \sqrt{(C_{11} - C_{12} + C_{44})/3\rho}$$
(S9)

A summary of the plane acoustic wave velocities is shown in Table S2.

Table S2 Plane acoustic wave velocities in m/s for the $Sn_{1.03-x-y}Bi_xSb_yTe$ compositions in different crystal orientation directions

	[100]		[110]			[111]	
Composition	V_l	V_t	V_l	V_{tl}	V_{t2}	V_l	V _t
SnTe	4185	1351	3202	2859	1351	3008	2461
Sn _{1.03} Te	4181	1350	3199	2856	1350	3005	2459
SnBi _{0.03} Te	4161	1343	3183	2842	1343	2991	2447
Sn _{0.94} Bi _{0.03} Sb _{0.06} Te	4172	1347	3192	2850	1347	2999	2454
Sn _{0.92} Bi _{0.03} Sb _{0.08} Te	4175	1347	3194	2852	1347	3001	2455
Sn _{0.90} Bi _{0.03} Sb _{0.10} Te	4172	1347	3192	2850	1347	2999	2454
Sn _{0.88} Bi _{0.03} Sb _{0.12} Te	4171	1346	3191	2849	1346	2998	2453
Sn _{0.86} Bi _{0.03} Sb _{0.14} Te	4178	1349	3197	2854	1349	3003	2457

For an isotropic cubic structure, the longitudinal and transverse sound velocities were estimated from the calculated bulk modulus (B) and shear modulus (G) using the below relations.²

$$V_l = \sqrt{(B + 4G/3)/\rho} \tag{S10}$$

$$V_t = \sqrt{G/\rho} \tag{S11}$$

Where both *B* and *G* are obtained by solving equations $S12-15^{2}$.

$$B = (B_R + B_v)/2 \tag{S12}$$

$$G = (G_R + B_R)/2 \tag{S13}$$

$$B_V = B_R = \frac{1}{3}(C_{11} + 2C_{12}) \tag{S14}$$

$$G_R = \frac{5(C_{11} - C_{12})C_{44}}{4C_{44} + 3(C_{11} - C_{12})}$$
(S15)

The average sound velocity, V_m was then obtained using equation S16.^{2,3}

$$V_m = \left[\frac{1}{3}\left(\frac{2}{V_t^3} + \frac{1}{V_l^3}\right)\right]^{-1/3}$$
(S16)

Table S3 Longitudinal, transverse, and average sound velocities in m/s for the $Sn_{1.03-x-y}Bi_xSb_yTe$ compositions

Composition	V_l	V_t	V_m
SnTe	3576	2152	2380
Sn _{1.03} Te	3573	2150	2378
SnBi _{0.03} Te	3556	2140	2366
Sn _{0.94} Bi _{0.03} Sb _{0.06} Te	3566	2146	2373
Sn _{0.92} Bi _{0.03} Sb _{0.08} Te	3568	2147	2374
Sn _{0.90} Bi _{0.03} Sb _{0.10} Te	3566	2146	2373
Sn _{0.88} Bi _{0.03} Sb _{0.12} Te	3565	2145	2372
Sn _{0.86} Bi _{0.03} Sb _{0.14} Te	3571	2149	2376

References

- 1 A. G. Beattie, J. Appl. Phys., 1969, 40, 4818–4821.
- 2 Z. Jia, P. Wang and W. Smith, *Open Phys.*, 2018, **16**, 826–831.
- 3 Z. Chen, Q. Sun, F. Zhang, J. Mao, Y. Chen, M. Li, Z. G. Chen and R. Ang, *Mater. Today Phys.*, 2021, 17, 100340.