Electronic Supplementary Information

Luminescent heteroleptic Eu(III) probes for the selective detection of diethyl chlorophosphate as G-series nerve agent mimic in the vapor phase using solid-state films

Zafar Abbas,^a Usha Yadav,^a Ray J. Butcher,^b Ashis K. Patra*^a

^aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India

^bDepartment of Chemistry, Howard University, Washington DC 20059, USA

Table of Contents	Page No.
Figure S1: ESI-MS spectral isotopic distribution pattern of Eu(o-OH) with experimental [M-H] ⁻	S 3
molecular ion peak.	
Figure S2: FT-IR spectra of the <i>o</i> -HPIP and <i>p</i> -HPIP ligands in KBr phase.	S 4
Figure S3: FT-IR spectra of the Eu(o-OH) and Eu(p-OH) complexes in KBr phase.	S 5
Figure S4: Thermogravimetric analysis (TGA) plot of the Eu(<i>o</i> -OH) and Eu(<i>p</i> -OH) complexes.	S 6
Figure S5: Perspective drawing of the Eu(o-OH) with twist angle and unit cell packing diagram.	S 7
Figure S6: Perspective drawing of the La(o-OH) with twist angle and unit cell packing diagram.	S 8
Table S1: Selected crystallographic data and structure refinement parameters of the Eu(o-OH) and Eu(o-OH)	S 9
La(<i>o</i> -OH) complexes.	
Table S2: Selected bond length and bond angles of the Eu(o-OH) and La(o-OH) structures.	S10
Figure S7: Perspective asymmetric unit drawing of the [Eu(DHP)3]n, unit cell packing diagram	S11
and 1D chain polymeric chain.	
Table S3: Selected crystallographic data and structure refinement parameters of the [Eu(DHP)3]n.	S12
Figure S8: Overlay absorption spectra of the ligands (<i>o/p</i> -HPIP and TTA), Eu(TTA)3.2H2O and	S13
complex Eu(o-OH) and Eu(p-OH).	
Figure S9: Overlay absorption spectra of the ligands (<i>o/p</i> -HPIP and TTA) and excitation spectra	S14
of complex Eu(o-OH) and Eu(p-OH).	
Figure S10: Luminescence decay profile for complex Eu(o-OH) in H ₂ O and D ₂ O.	S15
Figure S11: Luminescence decay profile for complex $Eu(p-OH)$ in H ₂ O and D ₂ O.	S16
Figure S12: PL spectra of Eu(o-OH) with the increasing concentration of HCl.	S17
Figure S13: PL spectra of Eu(o-OH) with the increasing concentration of TEA.	S18
Figure S14: PL spectra of Eu(o-OH) in the presence of HCl and TEA together.	S19
Figure S15: PL spectra of Eu(o-OH) with the increasing concentration of NaOH.	S20
Figure S16: The overlaid ¹ H-NMR titration spectra of the La(<i>o</i> -OH) with the addition of DCP in	S21
aliphatic region.	
Figure S17: The overlaid ¹ H-NMR titration spectra of the La(<i>o</i> -OH) with the addition of DCP in	S22
aromatic region.	
Figure S18: The overlaid ¹ H-NMR titration spectra of the La(<i>o</i> -OH) with the addition of DCP	S23
showing the disappearance of broad OH and NH proton signals.	
Figure S19: ³¹ P-NMR signals of the La(<i>o</i> -OH) after the addition of DCP.	S23
Figure S20: Representation of plot for the calculation of limit of detection for Eu(o-OH).	S24
Figure S21: Representation of plot for the calculation of limit of detection for Eu(<i>p</i> -OH).	S25

Figure S1. ESI-MS spectra of the **Eu**(*o*-**OH**) in CHCl₃ showing observed molecular ion peak as $[M-H]^-$ at m/z 1126.98 with theoretically predicted isotopic distribution profile.

Figure S2. FT-IR spectra of *o*-HPIP and *p*-HPIP ligands in solid state using KBr disc in the range 400-4000 cm⁻¹.

Figure S3. FT-IR spectra of Eu(o-OH) and Eu(p-OH) complexes in solid state using KBr disc in the range 400-4000 cm⁻¹. The inset figure shows the overlay of the FT-IR spectra in fingerprint region.

Figure S4. TGA plot of the **Eu**(*o*-**OH**) and **Eu**(*p*-**OH**) complexes at a heating rate of 10 °C min⁻¹ under N₂ atmosphere.

Figure S5. Perspective drawing of the **Eu**(*o*-**OH**) with twist angle (top) and unit cell packing diagram (bottom) of the **Eu**(*o*-**OH**) along b-axis.

Figure S6. Perspective drawing of the **La(***o***-OH**) with the twist angle (top) and unit cell packing diagram (bottom) of the **La(***o***-OH**) along b-axis.

Parameter	[Eu(o-HPIP)(TTA) ₃]·(CHCl ₃)	[La(o-HPIP)(TTA) ₃]·2(CHCl ₃)		
Empirical formula	$C_{44}H_{25}Cl_3EuF_9N_4O_7S_3$	$C_{45}H_{26}Cl_6F_9LaN_4O_7S_3$		
Formula weight	1247.17	1353.49		
Crystal system	Triclinic	Triclinic		
Space group	<i>P</i> -1	<i>P</i> -1		
a /Å	15.4707(13)	15.852(3)		
<i>b</i> /Å	17.5731(15)	17.886(3)		
c /Å	21.2458(18)	21.388(3)		
α (deg)	67.219(3)	66.895(4)		
β (deg)	76.283(3)	73.584(4)		
$\gamma(\text{deg})$	73.703(3)	71.157(4)		
Volume (Å ³)	5057.4(8)	5193.7(14)		
Ζ	4	4		
$D_x(Mg m^{-3})$	1.638	1.731		
μ (mm ⁻¹)	1.607	1.338		
<i>F</i> (000)	2464	2672		
T(K)	100(2)	100(2)		
θ range for data collection(deg)	2.988 to 28.266	2.281 to 28.327		
	$-20 \le h \le 20$,	$-21 \le h \le 21,$		
Limiting indices	$-23 \le k \le 23,$	$-23 \le k \le 23,$		
-	$-28 \le l \le 28$	$-28 \le 1 \le 28$		
Reflections collected	80074	71657		
Unique reflections	24985	25777		
<i>R</i> (int)	0.1393	0.0909		
Data/restraint/para meter	24985 / 2059 / 1411	25777 / 1245 / 1651		
GOF on F^2	1.106	1.083		
R_1^a and wR_2^b [$I > 2\sigma(I)$]	0.1443 and 0.2783	0.0879 and 0.1696		
R_1 and wR_2 (all data)	0.2099 and 0.3108	0.1388 and 0.1912		
Largest diff. peak and hole (e.A ⁻³)	2.197 and -4.106	2.528 and -1.509		
CCDC deposition number	2049309	2049310		
^a $R_1 = \Sigma F_0 - F_C / \Sigma F_0 $. ^b $wR_2 = \{ \sum [w(F_0^2 - F_C^2)] / \sum [w(F_0^2)^2] \}^{1/2}$.				

Table S1. Selected crystallographic data and structure refinement parameters of complexes.

Table S2. Selected bond lengths [Å] and bond angles [°] for Eu(o-OH) and La(o-OH).					
[Eu(o-HPIP)(TTA) ₃]		[La(o-HPIP)(TTA) ₃]			
	Bond Length (Å)		Bond Length (Å)		
Eu(1)-O(1A)	2.340(10)	La(1)-O(1A)	2.445(5)		
Eu(1)-O(2A)	2.373(9)	La(1)-O(2A)	2.449(5)		
Eu(1)-O(3A)	2.375(11)	La(1)-O(6A)	2.457(5)		
Eu(1)-O(5A)	2.383(9)	La(1)-O(5A)	2.457(5)		
Eu(1)-O(4A)	2.388(10)	La(1)-O(3A)	2.479(5)		
Eu(1)-O(6A)	2.413(9)	La(1)-O(4A)	2.531(5)		
Eu(1)-N(1A)	2.623(11)	La(1)-N(1A)	2.728(6)		
Eu(1)-N(2A)	2.545(12)	La(1)-N(2A)	2.673(6)		
	Bond Angles (°)		Bond Angles (°)		
O(1A)-Eu(1)-O(2A)	71.1(3)	O(4B)-La(2)-O(1B)	134.12(19)		
O(1A)-Eu(1)-O(3A)	98.6(4)	O(4B)-La(2)-O(3B)	69.65(19)		
O(2A)-Eu(1)-O(3A)	89.2(3)	O(1B)-La(2)-O(3B)	78.3(2)		
O(1A)-Eu(1)-O(5A)	141.8(3)	O(4B)-La(2)-O(5B)	120.16(19)		
O(2A)-Eu(1)-O(5A)	71.9(3)	O(1B)-La(2)-O(5B)	78.31(17)		
O(3A)-Eu(1)-O(5A)	71.5(4)	O(3B)-La(2)-O(5B)	73.25(19)		
O(1A)-Eu(1)-O(4A)	73.3(4)	O(4B)-La(2)-O(2B)	75.48(19)		
O(2A)-Eu(1)-O(4A)	136.1(4)	O(1B)-La(2)-O(2B)	70.09(17)		
O(3A)-Eu(1)-O(4A)	71.4(4)	O(3B)-La(2)-O(2B)	85.6(2)		
O(5A)-Eu(1)-O(4A)	132.0(4)	O(5B)-La(2)-O(2B)	144.98(17)		
O(1A)-Eu(1)-O(6A)	146.7(3)	O(4B)-La(2)-O(6B)	77.58(18)		
O(2A)-Eu(1)-O(6A)	142.0(3)	O(1B)-La(2)-O(6B)	144.45(17)		
O(3A)-Eu(1)-O(6A)	86.9(3)	O(3B)-La(2)-O(6B)	106.2(2)		
O(5A)-Eu(1)-O(6A)	71.1(3)	O(5B)-La(2)-O(6B)	69.79(17)		
O(4A)-Eu(1)-O(6A)	77.5(4)	O(2B)-La(2)-O(6B)	144.46(16)		
O(1A)-Eu(1)-N(2A)	103.5(4)	O(4B)-La(2)-N(1B)	93.04(18)		
O(2A)-Eu(1)-N(2A)	73.3(3)	O(1B)-La(2)-N(1B)	108.78(18)		
O(3A)-Eu(1)-N(2A)	145.2(4)	O(3B)-La(2)-N(1B)	159.41(19)		
O(5A)-Eu(1)-N(2A)	74.5(4)	O(5B)-La(2)-N(1B)	126.66(18)		
O(4A)-Eu(1)-N(2A)	140.8(4)	O(2B)-La(2)-N(1B)	79.05(17)		
O(6A)-Eu(1)-N(2A)	89.0(3)	O(6B)-La(2)-N(1B)	79.67(16)		
O(1A)-Eu(1)-N(1A)	76.3(3)	O(4B)-La(2)-N(2B)	150.52(19)		
O(2A)-Eu(1)-N(1A)	116.4(4)	O(1B)-La(2)-N(2B)	71.67(18)		
O(3A)-Eu(1)-N(1A)	149.4(3)	O(3B)-La(2)-N(2B)	138.60(19)		
O(5A)-Eu(1)-N(1A)	130.2(3)	O(5B)-La(2)-N(2B)	73.32(18)		
O(4A)-Eu(1)-N(1A)	78.3(4)	O(2B)-La(2)-N(2B)	109.19(17)		
O(6A)-Eu(1)-N(1A)	82.4(3)	O(6B)-La(2)-N(2B)	84.22(17)		
N(2A)-Eu(1)-N(1A)	63.4(3)	N(1B)-La(2)-N(2B)	60.70(18)		

Figure S7. a) Asymmetric unit of $[Eu(DHP)_3]_n$ polymer chain; b) Unit cell diagram of the $[Eu(DHP)_3]_n$ structure viewed along b-axis; c) A view of the 1-D chain showing Eu(III) ion forming a chain having three bridging DHPs between the two ions. Hydrogen atoms are omitted for clarity.

Parameters	$[Eu(DHP)_3]_n$		
Empirical formula	$C_{24}H_{60}Eu_2O_{24}P_6$		
Formula weight	1222.46		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
a Å	10.1425(15)		
<i>b</i> Å	11.2668(17)		
<i>c</i> Å	20.708(3)		
α (deg)	101.038(4)		
β (deg)	90.599(4)		
γ (deg)	91.973(4)		
Volume Å ³	2320.8(6)		
Ζ	2		
$D_x(Mg m^{-3})$	1.749		
$\mu (mm^{-1})$	2.960		
<i>F(000)</i>	1224		
T(K)	100(2)		
θ range for data	1 16 to 50 1		
collection(deg)	4.40 10 30.1		
	$-12 \le h \le 12$,		
Limiting indices	$-13 \le k \le 13$,		
	$-24 \le l \le 24$		
Reflections collected	24255		
Unique reflections	8005		
<i>R</i> (int)	0.0619		
Data/restraint/parameter	8005 / 0 / 499		
GOF on F^2	1.163		
R_1^a and wR_2^b [I>2 σ (I)]	0.0565 and 0.1194		
R_1 and wR_2 (all data)	0.0724 and 0.1278		
Largest diff. peak and hole	1.06 and 1.58		
$(e.A^{-3})$	1.90 and -1.50		
CCDC deposition number	2069827		
^a $R_1 = \Sigma F_0 - F_C / \Sigma F_0 $. ^b w $R_2 = \{ \sum [w(F_0^2 - $			
$F_{\rm C}^2)]/\sum[{\rm w}(F_0^2)^2]\}^{1/2}.$			

Table S3. Selected crystallographic data and structure refinement parameters of **Eu**(*o*-**OH**) and DCP reaction product: [Eu(DHP)₃]_n.

Figure S8. Electronic absorption spectra of the ligands (*o*/*p*-HPIP and TTA) (15 μ M), Eu(TTA)₃.2H₂O (5 μ M) and complex **Eu**(*o*-OH) and **Eu**(*p*-OH) (5 μ M) in MeCN at 298 K.

Figure S9. Electronic absorption spectra of the ligands (*o*/*p*-HPIP and TTA) (15 μ M) and excitation spectra of the complexes **Eu**(*o*-**OH**) and **Eu**(*p*-**OH**) (5 μ M) in MeCN at 298 K.

Figure S10. Luminescence decay profile of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition and lifetime measurements for complex **Eu**(*o*-**OH**) in H₂O and D₂O (5 μ M) at 298 K. λ_{ex} = 340 nm, delay time and gate time = 0.1 ms, total decay time = 10.0 ms, Ex. and Em. Slit width = 5 nm.

Figure S11. Luminescence decay profile of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition and lifetime measurements for complex Eu(*p*-OH) in H₂O and D₂O (5 μ M) at 298 K. λ ex= 340 nm, delay time and gate time = 0.1 ms, total decay time = 3.0 ms, Ex. and Em. Slit width = 5 nm.

Figure S12. Changes in the PL spectra ($\lambda_{ex} = 340 \text{ nm}$) of **Eu**(*o*-OH) (5 μ M) with the increasing concentration of HCl (0-30 μ M) observed at characteristic emission from the hypersensitive band of Eu(III) ion (${}^{5}D_{0} \rightarrow {}^{7}F_{2} = 613 \text{ nm}$).

Figure S13. Changes in the PL spectra ($\lambda_{ex} = 340 \text{ nm}$) of **Eu(***o***-OH**) (5 μ M) with the increasing concentration of triethylamine (**TEA**) (0-50 μ M) observed at characteristic emission from the hypersensitive band of Eu(III) ion (${}^{5}D_{0} \rightarrow {}^{7}F_{2} = 613 \text{ nm}$).

Figure S14. Reversible changes in the PL ($\lambda ex = 340 \text{ nm}$) of **Eu**(*o*-OH) (5 μ M) with the addition of **HCl** (0-30 μ M) followed by the addition of **TEA** (0-30 μ M) observed at characteristic emission from the hypersensitive band of Eu(III) ion (${}^{5}D_{0} \rightarrow {}^{7}F_{2} = 613 \text{ nm}$).

Figure S15. Changes in the PL spectra ($\lambda_{ex} = 340 \text{ nm}$) of **Eu**(*o*-OH) (5 μ M) with the increasing concentration of **NaOH** (0-7.5 μ M) observed at characteristic emission from the hypersensitive band of Eu(III) ion (${}^{5}D_{0} \rightarrow {}^{7}F_{2} = 613 \text{ nm}$).

NMR titration studies of [La(o-HPIP)(TTA)3] with DCP in DMSO-d6

Figure S16. Overlaid ¹H-NMR signals of the **La(***o***-OH**) (20 mM) in the aliphatic region of the spectrum with the gradual addition of DCP (0-100 mM).

Figure S17. Overlaid ¹H-NMR signals of the **La(***o***-OH**) (20 mM) in the aromatic region of the spectrum with the gradual addition of DCP (0-100 mM).

Figure S18. Overlaid ¹H-NMR signals of the **La**(*o*-**OH**) (20 mM) showing the broad signals corresponding to O-H and N-H proton disappears with gradual addition of DCP (0-40 mM) due to proposed phosphorylation reaction.

Figure S19. ³¹P-NMR signals of the **La**(*o*-**OH**) (20 mM) showing a single sharp signal after the addition of DCP (100 mM).

Limit of Detection Calculations:

$$LOD = 3.3\sigma/s$$

Where, σ is the standard deviation of the regression line and *s* is the slope of the curve.

For **Eu**(*o*-**OH**), *s* = 0.3724 and σ = 0.0124

For **Eu**(*p*-**OH**), *s* = 0.5442 and σ = 0.0092

Figure S20. Representation of plot from the luminescence titration for the calculation of limit of detection (LOD) for DCP from the line of regression for **Eu**(*o*-**OH**) probe.

Figure S21. Representation of plot for the calculation from the luminescence titration for the calculation of limit of detection (LOD) from the line of regression for **Eu**(*p*-**OH**) probe.