Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Impact of chemical modifications on the luminescence properties of

organic neutral radical emitters #

Eunkyung Cho, Veaceslav Coropceanu,* and Jean-Luc Brédas*

Department of Chemistry and Biochemistry The University of Arizona Tucson, Arizona 85721-0088

[#] Dedicated to Professor Concepció Rovira and Professor Jaume Veciana, in honor of their seminal contributions to the fields of molecular electronics and magnetism.

* Email: coropceanu@arizona.edu; jlbredas@arizona.edu

Content

Figure S1. Energies of the LUMO, SOMO, and doubly occupied HOMO levels in the TTM and donor (isolated) fragments. S3

Figure S2. Frontier molecular orbitals of the TTM-1Cz and TTM-xPyID radicals. S3

Table S1. Vertical excitation energies (E), transition dipole moments (μ), and oscillator strengths (f) of the lowest ten doublet and lowest quartet excited states in the TTM radical. S4

Table S2. Vertical excitation energies (in eV) and (in parentheses) transition dipole moments (inD) of the CT, LE_1 , LE_{r1} , and LE_{r2} states of the TTM-1Cz and TTM-xPyID radicals.S4

Figure S3. Schematic description of the contributions to the transition dipole moments in the CT state due to CT-GS hybridization (μ^{CT-GS} , red arrows), CT-LE_{r1} hybridization ($\mu^{CT-LEr1}$, green arrows), and CT-LE_{r2} hybridization ($\mu^{CT-LEr2}_{CT}$, blue arrows) for the TTM-1Cz and TTM-xPyID radicals; yellow dots indicate the center-of-mass for each molecule.

Table S3. Adiabatic CT energies $\binom{E_{CT}^{a}}{}$, electronic coupling values (V_{CT-GS}) , and reorganization energies (λ) between the CT and ground states in the TTM-1Cz and TTM-xPyID radicals.

S5

Table S4. Nonradiative decay rates $\binom{k^{CT-GS}}{nr}$ from the coupling between the CT and ground states in the TTM-1Cz and TTM-xPyID radicals calculated by considering different amounts of quantum contributions (λ_{qm}) to the total reorganization energy λ ; λ_{qm} is assigned to 0, 10, 20, and 50% of λ . S6

Table S5. Relaxation energies of the TTM and donor fragments in the neutral state and charged state, λ_{rel-N} (meV) and λ_{rel-C} (meV), obtained from the adiabatic potential surfaces of both neutral and charged states and from a normal-mode analysis; the charged states of the TTM and donor (Cz and xPyID) fragments correspond to the anion and cation states, respectively. S6

Figure S1. Energies of the LUMO, SOMO, and doubly occupied HOMO levels in the TTM and donor (isolated) fragments.

Figure S2. Frontier molecular orbitals of the TTM-1Cz and TTM-xPyID radicals.

	E (eV)	μ (D)	f
D ₁	2.82	1.62	0.03
D_2	2.82	1.62	0.03
D_3	3.10	0.89	0.01
D_4	3.10	0.62	0.00
D_5	3.10	0.62	0.00
D_6	3.29	0.00	0.00
\mathbf{D}_7	3.55	4.07	0.22
D ₈	3.55	4.07	0.22
D ₉	3.74	1.05	0.02
D ₁₀	3.92	0.50	0.00
Q_1	3.96	0.00	0.00

Table S1. Vertical excitation energies (E), transition dipole moments (μ), and oscillator strengths (f) of the lowest ten doublet and lowest quartet excited states in the TTM radical.

Table S2. Vertical excitation energies (in eV) and (in parentheses) transition dipole moments (in D) of the CT, LE_1 , LE_{r1} , and LE_{r2} states of the TTM-1Cz and TTM-xPyID radicals.

State	TTM-1Cz	TTM-αPyID	TTM-βPyID	TTM-γPyID	TTM-δPyID
D ₁ (CT)	2.19 (3.71)	2.45 (3.55)	2.33 (3.53)	2.40 (3.31)	2.30 (3.59)
$D_{2 \text{ or } 3}^{\#} (LE_1)$	2.82 (1.45)	2.82 (1.28)	2.81 (1.55)	2.80 (1.57)	2.81 (1.49)
$D_8 (LE_{r1})$	3.31 (3.68)	3.37 (4.18)	3.33 (3.11)	3.33 (3.58)	3.32 (3.43)
$D_{9 \text{ or } 10}^{*}$ (LE _{r2})	3.49 (3.96)	3.49 (3.95)	3.51 (3.91)	3.52 (3.75)	3.50 (3.95)

[#] The D₂ states of the TTM-xPyID radicals and D₃ state of TTM-1Cz are assigned as LE₁. * The D₁₀ states of all radicals except TTM- α PyID are assigned as LE_{r2}; LE_{r2} in the TTM- α PyID is the D₉ state.

Figure S3. Schematic description of the contributions to the transition dipole moments in the CT state due to CT-GS hybridization (μ^{CT-GS}_{CT} , red arrows), CT-LE_{r1} hybridization ($\mu^{CT-LEr1}_{CT}$, green arrows), and CT-LE_{r2} hybridization ($\mu^{CT-LEr2}_{CT}$, blue arrows) for the TTM-1Cz and TTM-xPyID radicals; yellow dots indicate the center-of-mass for each molecule.

Table S3. Adiabatic CT energies $({}^{E}c^{T})$, electronic coupling values (V_{CT-GS}) , and reorganizatio
energies (λ) between the CT and ground states in the TTM-1Cz and TTM-xPyID radicals.

state	TTM-1Cz	TTM-αPyID	TTM-βPyID	TTM-γPyID	TTM-δPyID
V _{CT-GS} (meV)	314	435	336	342	337
$E_{CT}^{a}(eV)$	1.94	2.31	2.12	2.17	2.09
λ (eV)	0.27	0.15#	0.24	0.29	0.25

[#]The geometry optimization calculation of the CT state in TTM- α PyID yielded unreliable results. Thus, based on the data shown in Table S5, we set the λ value in TTM- α PyID equal to the average value of TTM- β PyID and TTM- δ PyID, *i.e.*, 0.25 eV.

Table S4. Nonradiative decay rates $\binom{k^{CT-GS}}{nr}$ from the coupling between the CT and ground states in the TTM-1Cz and TTM-xPyID radicals calculated by considering different amounts of quantum contributions (λ_{qm}) to the total reorganization energy λ ; λ_{qm} is assigned to 0, 10, 20, and 50% of λ .

	k^{CT-GS}_{nr} (s ⁻¹)				
λ_{qm}	0% of λ	10% of λ	20% of λ	50% of λ	
TTM-1Cz	1.59×10^{-28}	4.30×10^{1}	2.19×10^{3}	4.35×10^6	
TTM-αPyID	4.41×10^{-56}	1.58×10^{-3}	2.94×10^{-1}	3.53×10^{3}	
TTM-βPyID	$7.10 imes 10^{-47}$	2.47×10^{-3}	1.18×10^{1}	2.74×10^4	
TTM-γPyID	2.97×10^{-36}	2.86×10^{-1}	1.26×10^2	2.76×10^{5}	
TTM-δPyID	6.45×10^{-42}	3.84×10^{-1}	3.59×10^{1}	1.22×10^{5}	

Table S5. Relaxation energies of the TTM and donor fragments in the neutral state and charged state, λ_{rel-N} (meV) and λ_{rel-C} (meV), obtained from the adiabatic potential surfaces of both neutral and charged states and from a normal-mode analysis; the charged states of the TTM and donor (Cz and xPyID) fragments correspond to the anion and cation states, respectively.

	Adiabatic potential surface		Normal mode		
	λ_{rel-N}	λ_{rel-C}	λ_{rel-N}	λ_{rel-C}	
TTM	109	121	108	125	
Cz	61	61	62	60	
αPyID	67	62	68	62	
βPyID	65	64	66	64	
γPyID	135	126	136	129	
δPyID	70	66	71	67	