Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Performance enhancement of p-Si/n-ZnGa₂O₄

heterojunction solar-blind UV photodetector through

interface engineering

Dongyang Han,^{ab} Kewei Liu,^{*ab} Jialin Yang,^a Xing Chen,^{ab} Binghui Li,^a Lei Liu,^{ab} and

Dezhen Shen*ab

^a State Key Laboratory of Luminescence and Applications, Changchun Institute of

Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun

130033, P.R. China

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese

Academy of Sciences, Beijing 100049, P.R. China

Corresponding Author:

*E-mail: liukw@ciomp.ac.cn (K.L.), *E-mail: shendz@ciomp.ac.cn (D.S

Fig. S1 *I-V* plots of the In metal contacts on *p*-Si and Au metal contacts on *n*- $ZnGa_2O_4$.

Fig. S2 The shape of the Au electrode. The comb-shaped Au electrode has a tooth width of 10 μ m, a length of 1 mm and a gap of 10 μ m.

Fig. S3 XRD patterns of Si substrate, ZnGa₂O₄ film grown on Si and Si/SiO₂.

Fig. S4 *I-V* characteristic curves of the Si/ZnGa₂O₄ PD (a) and Si/SiO₂/ZnGa₂O₄ PD (b) in dark under linear coordinates. The inset is the schematic diagram of the power supply connections of the device at forward bias.

Fig. S5 The normalized transient current photoresponse characteristics of $Si/SiO_2/ZnGa_2O_4$ PDs with different SiO_2 layer thickness (from 50 nm to 150 nm) under 254 nm illumination with 1020 μ W/cm² intensity at -1 V bias.

Fig. S6 (a) Time-dependent photoresponse characteristics of Si/SiO₂/ZnGa₂O₄ PD the under 254 nm illumination with 1020 μ W/cm² intensity at different bias voltages from -1 V to -5 V. (b) The rise and decay times of Si/SiO₂/ZnGa₂O₄ PD as function of bias voltage.