Supporting Information

Manipulating Matrix Stacking Modes for Ultralong Organic Room Temperature Phosphorescence in Trace Isomer Doping Systems

 Shanfeng Xue*a and Wenjun Yang*a
Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science \& Engineering, Qingdao University of Science \& Technology, 53-Zhengzhou Road, Qingdao, 266042, P. R. China. E-mail: ywjph2004@qust.edu.cn, sfxue@qust.edu.cn.

General method

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AC500 spectrometer at 500 MHz and 125 MHz , respectively, using deuterated chloroform or deuterated dimethyl sulfoxide as the solvent and tetramethylsilane (TMS) as the internal standard. Photo-luminescence spectra were recorded on a Hitachi F-4600 spectrophotometer. Time-resolved decay curves were recorded by a Hamamatsu compact fluorescence lifetime spectrometer (FLS-1000). The lifetimes (τ) of the luminescence were obtained by fitting the decay curve with a multi-exponential decay function of
$R(t)=\sum_{i} B_{i} e^{-\frac{t}{\tau}}$
where and represent the amplitudes and lifetimes of the individual components for multi-exponential decay profiles, respectively. The digital photographs were captured by the FDR-AX700 4K HDR digital cameras (SONY, Japan). Absolute PL quantum yields (PLQY) were determined with a spectrometer C11347 (Hamamatsu, Japan). Elemental analysis was characterized using a Flash EA 1112 instrument. Photoluminescence spectra and photographs at 78 K were performed on a QE Pro spectrometer with a CCD array (Ocean Optics) as a power detector and 365 nm lamp as excitation light. The RTP yields were generally obtained by peak-differentiation-imitating analysis from the corresponding steady-state and transient PL spectra and the absolute total quantum yield $\left(\Phi_{\mathrm{p}}\right)$. By peak-differentiation-imitating analysis, the RTP ratio can be identified, and from, both fluorescent and RTP yields can be figured out. As illustrated in Equation $S 2, \Phi_{\mathrm{p}}$ is obtained by photon counting from the excitation source into an integration sphere with the ratio of photons emitted:
$\Phi=\frac{N^{e m}}{N^{a b s}}$

In this equation, N^{em} is the number of emitted photons and $\mathrm{N}^{\text {abs }}$ is the number of absorbed photons.

Synthesis and Characterization

Scheme 1. The synthetic route of P34N and P34M.

(9 H -carbazol-9-yl)isonicotinonitrile (P34N).
A mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.75 \mathrm{~g}, 5.46 \mathrm{mmol})$, 9 H -carbazole ($0.91 \mathrm{~g}, 5.45 \mathrm{mmol}$), 3-bromoisonicotinonitrile (1.0 g , 5.46 mmol) and 1,10-phenanthroline monohydrate ($0.06 \mathrm{~g}, 0.55 \mathrm{mmol}$) in DMF (30 mL) was stirred at room temperature. Cul ($0.4 \mathrm{~g}, 1.10 \mathrm{mmol}$) was added to the mixture and stirred at $128^{\circ} \mathrm{C}$ for 48 h . After cooling to room temperature, the reaction mixture was extracted with dichloromethane. The combined organic layer was dried with anhydrous MgSO_{4}, and filtered and concentrated in vacuo. The crude product was purified by silica-gel column chromatography using petroleum ether/dichloromethane ($1: 1, \mathrm{v} / \mathrm{v}$), yielding a yellow-green solid (0.45 g , yield 28.4%). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 9.05(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-8.05(\mathrm{~m}$, 3 H), $7.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.37$ (ddd, $J=8.0,5.8,2.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}): $\delta 148.55,139.11,137.29,133.46,130.59,128.88,126.21,123.85,121.18,120.30,116.41,108.62$. Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{3}$: C, 80.28; H, 4.12; $\mathrm{N}, 15.60$. Found: C, 80.33; H, 4.09; N, 15.58.

3-(9H-carbazol-9-yl)isonicotinamide (P34M).
A mixture of 3-(9H-carbazol-9-yl)isonicotinonitrile ($0.4 \mathrm{~g}, 1.50 \mathrm{mmol}$), $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1.25 \mathrm{~g}, 37.5 \mathrm{mmol})$, KOH $(0.74 \mathrm{~g}, 18.5 \mathrm{mmol})$, and DMSO (30 mL) was stirred for 3 h at $40{ }^{\circ} \mathrm{C}$. After cooling to room temperature, the mixture was extracted with dichloromethane, and the combined organic layer was dried with anhydrous MgSO_{4} and filtered and then concentrated in vacuo. The crude product was purified by silica-gel column chromatography using dichloromethane as the eluent to give the compound as a white solid (0.4 g , yield 90%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 8.94(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.40-8.18(\mathrm{~m}, 5 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.46$ (dd, $J=6.1,1.4 \mathrm{~Hz}, 4 \mathrm{H}$), 7.33 (ddd, $J=7.9,6.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- $_{6}$): $\delta 165.39,148.78$, 146.24, 139.72, 135.97, 135.41, 126.55, 123.37, 123.16, 120.78, 120.63, 109.56. Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$: C, $75.25 ; \mathrm{H}, 4.56 ; \mathrm{N}, 14.63$. Found: C, $75.30 ; H, 4.52 ; \mathrm{N}, 14.65$.

Scheme 2. The synthetic route of P35N and P35M.

5-(9H-carbazol-9-yl)nicotinonitrile (P35N).
A mixture of 9 H -carbazole ($1.0 \mathrm{~g}, 6.00 \mathrm{mmol}$), 3-bromo-5-fluoropyridine ($1.2 \mathrm{~g}, 6.56 \mathrm{mmol}$), copper powder ($0.25 \mathrm{~g}, 3.94 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(3.31 \mathrm{~g}, 24.0 \mathrm{mmol})$, and 18 -crown-6 ($0.53 \mathrm{~g}, 1.97 \mathrm{mmol}$) in odichlorobenzene (40 mL) was stirred and refluxed for 36 h . The excessive o-dichlorobenzene was removed under reduced pressure. The crude product was purified by silica-gel column chromatography using dichloromethane as the eluent to give the white compound (0.35 g , yield 19.4%). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.13(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.96(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=7.7,1.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.47$ (ddd, J= 8.3, 6.9, 1.3 Hz), $7.41-7.32(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 151.71,150.23$, 139.92, 136.65, 135.01, 126.70, 124.14, 121.51, 120.81, 115.67, 111.01, 108.90. Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{3}$: C, 80.28; H, 4.12; N, 15.60. Found: C, 80.29; H, 4.09; N, 15.62.

5-(9H-carbazol-9-yl)nicotinamide (P35M).
A mixture of 5-(9H-carbazol-9-yl)nicotinamide ($0.4 \mathrm{~g}, 1.50 \mathrm{mmol}$), $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1.25 \mathrm{~g}, 37.5 \mathrm{mmol})$, KOH $(0.74 \mathrm{~g}, 18.5 \mathrm{mmol})$, and DMSO (30 mL) was stirred for 3 h at $40^{\circ} \mathrm{C}$. After cooling to room temperature, the mixture was extracted with dichloromethane. The combined organic layer was dried with anhydrous MgSO_{4}, and filtered and concentrated in vacuo. The crude product was purified by silica-gel column chromatography using dichloromethane as the eluent to give the compound as a white solid (0.4 g , yield 90%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d_{6}$): $\delta 9.23(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.13-9.05(\mathrm{~m}, 1 \mathrm{H}), 8.54(\mathrm{q}, J=2.1,1.6 \mathrm{~Hz}$, 1H), 8.41-8.26 (m, 3H), $7.84(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}$): $\delta 165.51,150.09,147.65,140.00,133.49,133.08,130.87,126.50,123.02,120.60,109.51$. Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 75.25 ; \mathrm{H}, 4.56 ; \mathrm{N}, 14.63$. Found: $\mathrm{C}, 75.32 ; \mathrm{H}, 4.49 ; \mathrm{N}, 14.61$.

6-(9H-carbazol-9-yl)nicotinonitrile (P 24 N).
A mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.75 \mathrm{~g}, 5.46 \mathrm{mmol})$, 9 H -carbazole ($0.91 \mathrm{~g}, 5.45 \mathrm{mmol}$), 2-bromo-5-fluoropyridine (1.0 $\mathrm{g}, 5.46 \mathrm{mmol}$) and 1,10-phenanthroline monohydrate ($0.06 \mathrm{~g}, 0.55 \mathrm{mmol}$) in DMF (30 mL) was stirred at room temperature. Cul ($0.4 \mathrm{~g}, 1.10 \mathrm{mmol}$) was added to the mixture and stirred at $128{ }^{\circ} \mathrm{C}$ for 48 h . After cooling to room temperature, the reaction mixture was extracted with dichloromethane. The combined organic layer was dried with anhydrous MgSO_{4}, and filtered and concentrated in vacuo. The crude product was purified by silica-gel column chromatography using petroleum ether/dichloromethane (1:1, v / v), yielding a white solid (0.3 g , yield 18.7%). ${ }^{1 \mathrm{H}} \mathrm{NMR}(500 \mathrm{MHz}$, Chloroform-d) $\delta 8.98$ (d, J = 2.3 Hz , $1 \mathrm{H}), 8.21-8.06(\mathrm{~m}, 3 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$): $\delta 154.07,152.26,140.72,138.26,126.22,124.75,121.88,119.90$, 116.94, 116.17, 111.41, 105.17. Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{3}$: C, 80.28; H, 4.12; N, 15.60. Found: C, 80.29; H, 4.09; N, 15.62.

6-(9H-carbazol-9-yl)nicotinamide (P24M).
A mixture of 6-(9H-carbazol-9-yl)nicotinonitrile ($0.4 \mathrm{~g}, 1.50 \mathrm{mmol}$), $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1.25 \mathrm{~g}, 37.5 \mathrm{mmol}), \mathrm{KOH}$ ($0.74 \mathrm{~g}, 18.5 \mathrm{mmol}$), and DMSO (30 mL) was stirred for 3 h at $40^{\circ} \mathrm{C}$. After cooling to room temperature, the mixture was extracted with dichloromethane. The combined organic layer was dried with anhydrous MgSO_{4}, and filtered and concentrated in vacuo. The crude product was purified by silica-gel column chromatography using dichloromethane as the eluent to give the compound as a white solid (0.4 g , yield 90%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$): $\delta 9.16(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.56-8.45(\mathrm{~m}, 1 \mathrm{H}), 8.32-8.16(\mathrm{~m}, 3 \mathrm{H}), 7.89$ (dd, $J=9.8,8.4 \mathrm{~Hz}, 3 \mathrm{H}$), $7.68(\mathrm{~s}, 1 \mathrm{H}), 7.46$ (ddd, $J=8.4,7.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.21(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): \delta 165.74,152.63,148.83,138.61,138.49,127.18,126.50,123.76,121.36,120.39$, 117.93, 111.63. Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 75.25 ; \mathrm{H}, 4.56 ; \mathrm{N}, 14.63$. Found: C, $75.32 ; \mathrm{H}, 4.49 ; \mathrm{N}, 14.61$.

Scheme 4. The synthetic route of P25N and P25M.

2-(9H-carbazol-9-yl)nicotinonitrile (P25N).
A mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.75 \mathrm{~g}, 5.46 \mathrm{mmol})$, 9 H -carbazole ($0.91 \mathrm{~g}, 5.45 \mathrm{mmol}$), 2-bromo-4-fluoropyridine (1.0 $\mathrm{g}, 5.46 \mathrm{mmol})$ and 1,10-phenanthroline monohydrate ($0.06 \mathrm{~g}, 0.55 \mathrm{mmol}$) in DMF (30 mL) was stirred at room temperature. $\mathrm{Cul}\left(0.4 \mathrm{~g}, 1.10 \mathrm{mmol}\right.$) was added to the mixture and stirred at $128{ }^{\circ} \mathrm{C}$ for 48 h . After cooling to room temperature, the reaction mixture was extracted with dichloromethane. The combined organic layer was dried with anhydrous MgSO_{4}, and filtered and concentrated in vacuo. The crude product was purified by silica-gel column chromatography using petroleum ether/dichloromethane (1:1, v / v), yielding a white solid (0.4 g , yield 25.2%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform-d): $\delta 8.89$ (d, J = 5.0 Hz , 1H), 8.12 (d, J = 7.7 Hz, 2H), 7.93-7.87 (m, 3H), 7.52-7.45 (m, 3H), 7.37 (t, J = 7.4 Hz, 2H). ${ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.84,150.69,138.86,126.62,124.84,122.58,121.99,121.61,120.39,119.94,116.12$, 111.19. Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{3}$: C, 80.28; $\mathrm{H}, 4.12 ; \mathrm{N}, 15.60$. Found: $\mathrm{C}, 80.19 ; \mathrm{H}, 4.02 ; \mathrm{N}, 15.79$.

2-(9H-carbazol-9-yl)isonicotinamide (P25M).
A mixture of 2-(9H-carbazol-9-yl)nicotinonitrile ($0.4 \mathrm{~g}, 1.50 \mathrm{mmol}$), $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1.25 \mathrm{~g}, 37.5 \mathrm{mmol})$, KOH ($0.74 \mathrm{~g}, 18.5 \mathrm{mmol}$), and DMSO (30 mL) was stirred for 3 h at $40^{\circ} \mathrm{C}$. After cooling to room temperature, the mixture was extracted with dichloromethane. The combined organic layer was dried with anhydrous MgSO_{4}, and filtered and concentrated in vacuo. The crude product was purified by silica-gel column chromatography using dichloromethane as the eluent to give the compound as a white solid (0.4 g , yield
 $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.86-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.46$ (ddd, J = 8.4, 7.0, 1.3 Hz, 2H), $7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO-d ${ }_{6}$): $\delta 165.67,151.41,150.21,144.68,138.78,126.45,123.51,121.12,120.40$, 119.55, 116.57, 111.27. Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 75.25 ; \mathrm{H}, 4.56 ; \mathrm{N}, 14.63$. Found: $\mathrm{C}, 75.32 ; \mathrm{H}, 4.49$; N, 14.61.

Supplementary Figures and Tables

Figure S1. HPLC spectra of CCZ and LCZ monitored at the onset absorption of 346 nm with $50 / 50$ acetonitrile (ACN)-water ratio (v/v). By comparing with Liu (right), the content of 1 H -benzo[f]indole (BFI) in CCZ we used is about 0.17\%.

Figure S2. The RTP unit cell structures of P35N, P34N, P24N, P35M, P34M and P25M measured at room temperature under 365 nm excitation.

b)

c)

Figure S3. The prompt spectra of a) P25N, P34N, P24N, P35N; b) P25M, P34M, P24M, P35M at 78 K (in liquid nitrogen) under 365 nm excitation. c) The prompt and delayed spectra and photographs of P25N and P24M measured at room temperature under 365 nm excitation.
a)

$\begin{array}{lllllllll}250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650\end{array}$ Wavelength (nm)
b)

$\begin{array}{lllllllll}250 & 300 & 350 & 400 & 450 & 500 & 550 & 600 & 650\end{array}$ Wavelength (nm)

Figure S4. The absorption and photoluminescence spectra of a) P35N, P34N, P24N, P25N; b) P35M, P34M, P25M, P24M in THF solution.

Compound	入ex/nm	Emission (nm)	$\tau_{1}(\mathrm{~ms})$	$\tau_{2}(\mathrm{~ms})$	$\tau_{3}(\mathrm{~ms})$	$\tau_{4}(\mathrm{~ms})$	$\tau_{a}(\mathrm{~ms})$
P35N	365	545	$\begin{gathered} 16.41 \\ (2.56 \%) \end{gathered}$	$\begin{gathered} 195.0 \\ (23.98 \%) \end{gathered}$	$\begin{gathered} 528.3 \\ (73.46 \%) \end{gathered}$		435.27
P34N		501	$\begin{gathered} 2.973 \\ (55.65 \%) \end{gathered}$	$\begin{gathered} 10.57 \\ (24.80 \%) \end{gathered}$	$\begin{gathered} 41.13 \\ (14.00 \%) \end{gathered}$	$\begin{gathered} 445.8 \\ (5.55 \%) \end{gathered}$	34.78
P24N		547	$\begin{gathered} 10.17 \\ (2.27 \%) \end{gathered}$	$\begin{gathered} 706.8 \\ (97.73 \%) \end{gathered}$			690.99
P25N		545	$\begin{gathered} 12.17 \\ (5.92 \%) \end{gathered}$	$\begin{gathered} 330.2 \\ (94.08 \%) \end{gathered}$			311.37
P35M		548	$\begin{gathered} 18.53 \\ (0.74 \%) \end{gathered}$	$\begin{gathered} 861.2 \\ (99.26 \%) \end{gathered}$			854.96
P34M		549	$\begin{gathered} 5.998 \\ (2.78 \%) \end{gathered}$	$\begin{gathered} 274.4 \\ (10.53 \%) \end{gathered}$	$\begin{gathered} 685.0 \\ (86.69 \%) \end{gathered}$		622.89
P24M		549	$\begin{gathered} 185.8 \\ (30.91 \%) \end{gathered}$	$\begin{gathered} 871.8 \\ (69.09 \%) \end{gathered}$			659.76
P25M		547	$\begin{gathered} 1.66 \\ (43.96 \%) \end{gathered}$	$\begin{gathered} 27.7 \\ (20.95 \%) \end{gathered}$	$\begin{gathered} 467.4 \\ (35.09 \%) \end{gathered}$		170.54

P34N EX360, $\Phi_{\text {total }}=45.6 \%, \Phi_{p}=26.4 \%$

P35N EX360, $\Phi_{\text {total }}=4.3 \%, \Phi_{p}=0.9 \%$

P 24 N EX360, $\Phi_{\text {total }}=51.3 \%, \Phi_{\mathrm{p}}=29.2 \%$

P25N EX360, $\Phi_{\text {total }}=26.0 \%, \Phi_{\mathrm{p}}=9.9 \%$

P 35 M EX360, $\Phi_{\text {total }}=7.7 \%, \Phi_{\mathrm{p}}=0.8 \%$

P24M EX360, $\Phi_{\text {total }}=52.3 \%, \Phi_{\mathrm{p}}=6.3 \%$

P25M EX360, $\Phi_{\text {total }}=23.7 \%, \Phi_{\mathrm{p}}=12.6 \%$

Figure S5. The RTP lifetimes, unit cell structures and quantum yield of P35N, P34N, P24N, P25N, P35M, P34M, P24M and P25M measured at room temperature under 365 nm excitation.

Figure S6. The low temperature phosphorescence photographs of CCZ and LCZ derivatives at 78 K (in liquid nitrogen) under 365 nm excitation.

Table S1. The crystal structual data of P34N, P24N, P35N, P25M, P34M and P35M.

Compound reference	Colorless P34N crystal	Colorless P24N crystal	Colorless P35N crystal	Colorless P25M crystal	Colorless P34M crystal	Colorless P35M crystal
Chemical formula	$\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{3}$	$\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{3}$	$\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{3}$	$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$	$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$	$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$
Formula weight	269.30	269.30	269.30	287.31	287.31	287.31
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P 21/c	P 21/n	P 21/c	P 21/n	P 21/c	P 21/n
a/ \AA	18.140(14)	9.034(3)	15.379(9)	8.543(8)	7.8374(11)	9.4696(11)
b/ \AA	3.914(3)	7.442(2)	7.516(4)	10.702(9)	25.281(3)	5.0807(6)
c/ \AA	18.577(14)	20.076(6)	11.563(6)	16.886(15)	14.813(2)	29.630(4)
$\alpha /{ }^{\circ}$	90	90	90	90	90	90
$\beta /{ }^{\circ}$	95.169(16)	99.057(6)	100.885(9)	91.104(17)	102.932(3)	96.439(2)
V/ ${ }^{\circ}$	90	90	90	90	90	90

Unit cell volume/ \AA^{3}	1313.6(17)	1332.9(7)	1312.5(12)	1544(2)	2860.6(7)	1416.6(3)
Temperature/K	100	100	100	100	100	100
Z	4	4	4	4	4	4
Density (calculated) /g cm^{-3}	1.362	1.342	1.363	1.236	1.334	1.347
F(000)	560	560	560	600	1200	600
Theta range for data collection	$\begin{aligned} & 2.562 \text { to } 24.997 \\ & \text { deg. } \end{aligned}$	$\begin{aligned} & 2.647 \text { to } \\ & 24.992 \text { deg. } \end{aligned}$	$\begin{aligned} & 3.028 \text { to } 24.994 \\ & \text { deg. } \end{aligned}$	$\begin{aligned} & 2.652 \text { to } \\ & 27.561 \mathrm{deg} \text {. } \end{aligned}$	$\begin{aligned} & 2.666 \text { to } 24.998 \\ & \text { deg. } \end{aligned}$	$\begin{aligned} & 2.767 \text { to } \\ & 24.996 \text { deg. } \end{aligned}$
Index ranges	$\begin{gathered} -21<=h<=20, \\ -4<=k<=4, \\ -15<==1<=22 \end{gathered}$	$\begin{aligned} & -10<=h<=10, \\ & -8<=k<=7, \\ & 23<=\mid<=22 \end{aligned}$	$\begin{aligned} & -16<=h<=18, \\ & -8<=k<=8, \\ & 13<=\mid<=7 \end{aligned}$	$\begin{aligned} & -10<=h<=9, \\ & -12<=k<=13, \\ & 21<=\mid<=21 \end{aligned}$	$\begin{gathered} -9<=\mathrm{h}<=9, \\ -30<=\mathrm{k}<=16, \\ -17<=1<=17 \end{gathered}$	$\begin{aligned} & -10<=h<=11, \\ & -6<=k<=6, \\ & -27<=k=35 \end{aligned}$
Completeness to theta	25.242 99.8\%	$\begin{aligned} & 24.992 \\ & 99.9 \% \end{aligned}$	24.994 99.4\%	$\begin{aligned} & 25.242 \\ & 95.3 \% \end{aligned}$	$\begin{aligned} & 24.988 \\ & 99.7 \% \end{aligned}$	$\begin{aligned} & 24.996 \\ & 99.4 \% \end{aligned}$
Absorption coefficient	None	None	None	None	None	None
Refinement method	Full-matrix leastsquares on $\mathrm{F}^{\wedge} 2$	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$	Full-matrix leastsquares on $\mathrm{F}^{\wedge} 2$	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	2302/24/201	2342 / 0/191	2298 / 0 / 198	3394 / 0/200	5035 / 0 / 397	2489 / 0 / 199
Goodness-of-fit on F^{2}	1.112	0.991	1.017	0.971	0.782	0.993
CCDC number	2046606	2056175	2046603	2056176	2046605	2053954

NMR Spectra

Figure S7. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{P 3 4 N}$ in CDCl_{3}.

Figure S8. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of P 34 M in DMSO- d_{6}.

Figure S9. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of P 35 N in CDCl_{3}.

Figure S10. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{P 3 5 M}$ in DMSO- d_{6}.

Figure S11. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{P 2 4 N}$ in CDCl_{3}.

Figure S12. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{P 2 4 M}$ in DMSO- d_{6}.

Figure S13. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{P 2 5 N}$ in CDCl_{3}.

| 10 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |

Figure S14. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{P 2 5 M}$ in DMSO- d_{6}.

