Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Heterovalent cations substitution to design asymmetric chalcogenides with promising nonlinear optical performances

Ya -Nan Li, Zi-Xia Chen, Wen-Dong Yao, Ru-Ling Tang* and Sheng-Ping Guo*

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu

225002, P. R. China

Corresponding author: rltang@yzu.edu.cn, spguo@yzu.edu.cn

CONTENTS

1. Tables and Figures

Table S1. Atom coordinates and equivalent isotropic displacement parameters of 1 and 2.

Table S2. Important bond lengths (Å) for 1 and 2.

 Table S3. Calculated bond valences for 1 and 2.

Table S4. Comparison of NLO properties about a series compounds of AM^{II}M^{IV}Q₄.

Figure S1. Experimental and simulated powder X-ray diffraction patterns of 1 and 2.

Figure S2. DSC curves of 1 (a) and 2 (b).

Figure S3. FT-IR spectra for 1 and 2.

Figure. S4. (a) The overall structure of BaZnGeSe₄ and the chain structure of BaZnGeSe₄. (b) Structure of β -BaHgSnS₄ viewed along the *c* direction and view of one _∞[Hg-Sn-S] layer along *a*-axis.

Figure S5. The calculated band structure for 1 and 2. The Fermi level is chosen at 0 eV.

Figure S6. Calculated real parts of the optical dielectric functions for 1 and 2.

Figure S7. The calculated DOS for 1 and 2. The Fermi level is chosen at 0 eV.

Figure S8. Calculated imaginary parts of the optical dielectric functions for 1 and 2.

Figure S9. Calculated wavelength-dependent birefringence Δn for 1 and 2.

Atom	Wyck. site	x	у	Z	$U_{ m eq}/{ m \AA}^2$			
Compound 1								
Ba(1)	16 <i>b</i>	7493.6(3)	4982.6(2)	-622.7(11)	13.1(2)			
Ba(2)	8 <i>a</i>	7500	2500	-616.9(11)	12.8(2)			
Ba(3)	8 <i>a</i>	7500	2500	4361.1(12)	12.8(2)			
Sn(1)	16 <i>b</i>	5699.7(4)	3749.4(4)	9765.4(5)	11.58(19)			
Sn(2)	16 <i>b</i>	6127.9(4)	3755.9(4)	4371.8(4)	10.83(18)			
Zn(1)	16 <i>b</i>	6392.0(6)	3746.6(6)	6850.9(10)	16.5(3)			
Zn(2)	16 <i>b</i>	6769.7(6)	3751.9(7)	1505.0(9)	15.1(3)			
S(1)	16 <i>b</i>	7043.2(12)	3759.1(19)	3263(2)	12.2(7)			
S(2)	16 <i>b</i>	7781.1(11)	3741.5(18)	678(2)	12.6(5)			
S(3)	16 <i>b</i>	6244.8(12)	4573.4(15)	10608(3)	12.2(10)			
S(4)	16 <i>b</i>	5481.7(12)	3742.0(16)	7952(2)	12.3(5)			
S(5)	16 <i>b</i>	7183.4(11)	3739(2)	8072(2)	15.0(6)			
S(6)	16 <i>b</i>	6241.4(13)	2928.8(15)	625(3)	13.2(10)			
S(7)	16 <i>b</i>	6244.4(13)	2931.6(15)	5599(3)	13.7(11)			
S(8)	16 <i>b</i>	6256.2(13)	4569.8(15)	5622(3)	12.4(10)			
Compound 2								
Ba(1)	8 <i>a</i>	5000	5000	2601(3)	12.8(4)			
Ba(2)	8 <i>a</i>	7500	2500	5090(3)	12.8(4)			
Ba(3)	16 <i>b</i>	4998.7(5)	2481.9(3)	2601(2)	13.8(4)			
Se(1)	16 <i>b</i>	5427.9(8)	3739.1(16)	3725.6(15)	10.4(5)			
Sn(1)	16 <i>b</i>	6356.2(6)	3744.8(7)	2592.9(11)	9.7(3)			
Zn(1)	16 <i>b</i>	8617.0(10)	3743.0(11)	7624(2)	19.1(6)			
Sn(2)	16 <i>b</i>	6804.9(6)	3750.7(6)	7180.9(11)	12.4(3)			

Table S1. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (U_{eq}^{a} , Å² × 10³) for **1** and **2**.

		(-)			
Se(8)	16 <i>b</i>	4542.9(9)	3738.6(15)	1532.5(15)	12.9(5)
Se(7)	16 <i>b</i>	3748.9(10)	2908.3(14)	3858(2)	12.4(7)
Se(6)	16 <i>b</i>	6250.3(10)	4590.0(14)	6329(2)	12.1(7)
Se(5)	16 <i>b</i>	6253.9(9)	2905.5(14)	6354(2)	12.5(7)
Se(4)	16 <i>b</i>	7835.6(7)	3741.4(17)	6352.7(16)	11.4(4)
Se(3)	16 <i>b</i>	3740.6(10)	4586.4(14)	3829(2)	12.7(7)
Zn(2)	16 <i>b</i>	5725.2(10)	3744.8(11)	5484.8(17)	14.9(5)
Se(2)	16 <i>b</i>	4706.8(8)	3762.0(15)	6328.6(16)	14.5(4)

 $^{a}U_{\mathrm{eq}}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Bond	Dist./Å	Bond	Dist./Å					
Compound 1								
Ba(1)–S(1)#1	3.249(4)	Ba(3)–S(8)#4	3.254(3)					
Ba(1)–S(2)	3.236(4)	Ba(3)–S(8)#9	3.254(3)					
Ba(1)–S(3)#2	3.223(3)	Sn(1)–S(3)	2.398(3)					
Ba(1)–S(4)#3	3.238(3)	Sn(1)–S(4)	2.350(3)					
Ba(1)–S(5)#2	3.253(4)	Sn(1)–S(5)#11	2.404(2)					
Ba(1)–S(6)#4	3.235(3)	Sn(1)–S(6)#10	2.399(3)					
Ba(1)–S(7)#3	3.259(3)	Sn(2)–S(1)	2.413(2)					
Ba(1)–S(8)#1	3.258(3)	Sn(2)–S(2)#11	2.363(2)					
Ba(2)–S(2)#5	3.231(4)	Sn(2)–S(7)	2.396(4)					
Ba(2)–S(3)#6	3.254(3)	Sn(2)–S(8)	2.401(4)					
Ba(2)–S(3)#7	3.254(3)	Zn(1)–S(4)	2.399(3)					
Ba(2)–S(5)#8	3.252(4)	Zn(1)–S(5)	2.297(3)					
Ba(2)–S(5)#2	3.252(4)	Zn(1)–S(7)	2.409(4)					
Ba(2)–S(6)#5	3.259(3)	Zn(1)–S(8)	2.400(4)					
Ba(3)–S(1)#5	3.238(4)	Zn(2)–S(1)	2.309(3)					
Ba(3)–S(4)#9	3.248(3)	Zn(2)–S(2)	2.406(2)					
Ba(3)–S(4)#4	3.248(3)	Zn(2)-S(3)#2	2.405(4)					
Ba(3)–S(7)#5	3.253(3)	Zn(2)–S(6)	2.401(4)					

Table S2. Important bond lengths (Å) for 1 and 2 $\,$

Compound 2

Ba(1)–Se(1)#1	3.362(4)	Ba(3)–Se(2)	3.340(3)
Ba(1)-Se(3)#1	3.369(3)	Sn(1)-Se(1)	2.549(2)
Ba(1)-Se(7)#2	3.356(3)	Zn(2)–Se(1)	2.414(3)
Ba(1)-Se(7)#3	3.356(3)	Sn(1)-Se(2)#2	2.498(2)
Ba(1)–Se(8)	3.351(3)	Sn(1)-Se(3)#2	2.532(3)
Ba(1)-Se(8)#1	3.350(3)	Sn(1)-Se(7)#2	2.531(3)
Ba(2)-Se(2)#2	3.331(3)	Zn(1)-Se(3)#7	2.505(4)
Ba(2)-Se(2)#4	3.331(3)	Zn(1)-Se(4)	2.416(3)
Ba(2)-Se(4)#5	3.359(4)	Zn(1)-Se(7)#7	2.516(4)
Ba(2)–Se(5)#5	3.363(3)	Zn(1)-Se(8)#7	2.513(3)
Ba(2)-Se(6)#4	3.371(3)	Sn(2)–Se(4)	2.540(2)
Ba(2)-Se(6)#2	3.371(3)	Sn(2)–Se(5)	2.525(3)
Ba(3)–Se(1)	3.356(4)	Sn(2)–Se(6)	2.533(3)
Ba(3)-Se(2)#6	3.351(3)	Sn(2)–Se(8)#8	2.500(3)
Ba(3)-Se(3)#2	3.378(3)	Zn(2)–Se(2)	2.524(2)
Ba(3)-Se(4)#4	3.349(4)	Zn(2)–Se(5)	2.516(4)
Ba(3)-Se(5)#6	3.354(3)	Zn(2)–Se(6)	2.508(4)
Ba(3)-Se(6)#4	3.340(3)	Zn(1)-Se(3)#12	2.504(4)
Ba(3)–Se(7)	3.379(3)		

Symmetry transformations used to generate equivalent atoms for **1**: #1 3/2-*y*, 1-*y*, -1/2+*z*; #2+*x*, +*y*, -1+*z*; #3 5/4-*x*, 1/4+*y*, -3/4+*z*; #4 1/4+*x*, 3/4-*y*, -1/4+*z*; #5 3/2-*x*, 1/2-*y*, +*z*; #6 5/4-*x*, -1/4+*y*, -5/4+*z*; #7 1/4+*x*, 3/4-*y*, -5/4+*z*; #8 3/2-*x*, 1/2-*y*, -1+*z*; #9 5/4-*x*, -1/4+*y*, -1/4+*z*; 10+*x*, +*y*, 1+*z*; #11 -1/4+*x*, 3/4-*y*, 1/4+*z*. Symmetry transformations used to generate equivalent atoms for **2** : #1 1-*x*, 1-*y*, +*z*; #2 1/4+*x*, 3/4-

y, -1/4+z; #3 3/4-x, 1/4+y, -1/4+z; #4 5/4-x, -1/4+y, -1/4+z; #5 3/2-x, 1/2-y, +z; #6 1-x, 1/2-y, -1/2+z; #7 1/2+x, +y, 1/2+z; #8 1/4+x, 3/4-y, 3/4+z; #12 -1/2+x, +y, -1/2+z;

Atom	bond valence	Atom	bond valence		
Com	pound 1	Compound 2			
Ba(1)	2.216	Ba(1)	2.191		
Ba(2)	2.187	Ba(2)	2.211		
Ba(3)	2.191	Ba(3)	2.214		
Zn(1)	1.859	Zn(1)	1.955		
Zn(2)	1.835	Zn(2)	1.940		
Sn(1)	4.059	Sn(1)	3.964		
Sn(2)	4.002	Sn(2)	3.997		
S(1)	2.055	Se(1)	2.075		
S(2)	2.080	Se(2)	2.384		
S(3)	1.972	Se(3)	2.237		
S(4)	2.111	Se(4)	2.377		
S(5)	2.083	Se(5)	2.268		
S(6)	1.963	Se(6)	2.251		
S(7)	1.949	Se(7)	2.210		
S(8)	1.946	Se(8)	2.370		

 Table S3. Calculated bond valences for 1 and 2.

Compound	Space group	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	Band gap (eV)	SHG (× AGS)	LIDT	⊿n
SrCdGeS ₄	Ama2	10.3325	10.2335	6.4408	2.60	2.0	/	/
SrCdGeSe ₄	Ama2	10.8245	10.6912	6.6792	1.90	5.0	/	/
SrHgSnS ₄	Ama2	10.4072	10.4873	6.5578	2.72	1.9	/	/
SrHgGeS ₄	Ama2	10.838	10.746	6.638	2.42	4.8	/	/
BaZnSiSe ₄	Ama2	11.3055	11.2344	6.1994	2.71	1/3	/	/
BaZnGeSe ₄	Ama2	11.3255	11.2527	6.2917	2.46	1.0	/	/
BaHgGeSe ₄	Ama2	11.255	11.033	6.6847	2.49	4.7	/	/
β -BaHgSnS ₄	Ama2	10.8450	10.8042	6.6178	2.77	2.8	/	/
SrZnSnS ₄	Fdd2	12.6336	20.9242	20.8591	2.83	$1.0 imes LiGaS_2$	/	/
SrCdSnS ₄	Fdd2	20.9017	21.0626	13.0676	2.05	1.3	0.22	10AGS
SrCdSnSe ₄	Fdd2	21.8908	21.8945	13.5407	1.54	1.5	0.33	5AGS
SrHgSnSe ₄	Fdd2	21.9027	21.9059	13.5010	2.07	5.0	/	/
$BaCdSnS_4$	Fdd2	21.566	21.760	13.110	2.30	0.7	/	/
BaCdSnSe ₄	Fdd2	22.381	22.711	13.588	1.79	1.6	/	/
BaMnSnS ₄	Fdd2	21.547	21.796	12.981	1.90	1.2	0.17	10AGS
BaCdGeS ₄	Fdd2	21.285	21.691	12.786	2.58	0.3	0.15	13AGS
BaHgSnSe ₄	Fdd2	22.441	22.760	13.579	1.98	5.0	/	/
$BaZnSnS_4$	Fdd2	21.398	21.865	12.707	3.25	0.6	0.17	5.7AGS
BaZnSnSe ₄	Fdd2	22.240	22.705	13.197	1.88	1.0	0.26	9.8AGS

Table S4. NLO properties about a series compounds of $AM^{II}M^{IV}Q_4$.

Figure S1. Powder XRD patterns for 1 and 2.

Figure S2. DSC curves of 1 (a) and 2 (b).

Figure S3. FT-IR spectra for 1 and 2.

Figure S4. (a) The overall structure of BaZnGeSe₄ and the chain structure of BaZnGeSe₄. (b) Structure of β -BaHgSnS₄ viewed along the c direction and view of one $_{\infty}$ [Hg-Sn-S] layer along the *a* direction.

Figure S5. The calculated band structures for 1 and 2. The Fermi level is chosen at 0 eV.

Figure S6. The calculated DOS for 1 and 2. The Fermi level is chosen at 0 eV.

Figure S7. Calculated real parts of the optical dielectric functions for 1 and 2.

Figure S8. Calculated imaginary parts of the optical dielectric functions for 1 and 2.

Figure S9. Calculated wavelength-dependent birefringence Δn for 1 and 2.