Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Solution Processed Bis-tridentate Iridium(III) complex-cored Dendrimers for Green OLEDs

Vaidehi Pandit[†], Junhyuk Jang[†], Mohammad Babazadeh[†], Chandana Sampath Kumara Ranasinghe[†], David

M. Huang, ¥ Paul L. Burn†*, Emma V. Puttock†

†Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences,

University of Queensland, St. Lucia, QLD, 4072, Australia

¥ Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide South Australia, 5005, Australia

*p.burn2@uq.edu.au

Figure S1. ¹H NMR spectrum of Compound 1 measured in deuterated dichloromethane.

Figure S2. Proton decoupled ¹⁹F NMR spectrum of Compound **1** measured in deuterated dichloromethane.

Figure S3. Gel permeation chromatography trace of Compound 1. The data in the experimental (GPC: $M_w = 434 \text{ Da}$; $M_n = 432 \text{ Da}$; D = 1.0) is taken for peak 1.

Figure S4. High resolution mass spectrum of Compound 1 (top – measured, bottom – calculated).

Figure S5. ¹H NMR spectrum of Dendrimer **2** measured in deuterated dichloromethane.

Figure S6. Proton decoupled ¹⁹F NMR spectrum of Dendrimer **2** measured in deuterated dichloromethane.

Figure S7. Gel permeation chromatography trace of Dendrimer **2**. The data in the experimental (GPC: $M_w = 1483 \text{ Da}$; $M_n = 1479 \text{ Da}$; D = 1.0) is taken for peak 1.

Figure S8. High resolution mass spectrum of Dendrimer 2 (top – measured, bottom – calculated).

LUMO E = -5.58 eV

HOMO E = -1.89 eV

E = -5.66 eV

E = -1.94 eV

Figure S9. Highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbitals (LUMO) of the singlet ground state at the optimised ground-state geometry, and up-spin (α) singly occupied molecular orbitals (α -SOMO and α -SOMO-1, with the latter lower in energy) and lowest energy unoccupied down-spin (β) molecular orbital (β -SUMO) of triplet state at the optimised triplet-state geometry for Complex 1 and Dendrimer 2. The hydrogen atoms are omitted for the sake of clarity.

Table S1: Calculated 5 lowest triplet	emission	energies	(wavelengths)	and	molecular	orbital	transitions	for
Complex 1.								

transition	$E\left(eV\right)/\lambda\left(nm\right)$	major $MO \rightarrow MO$ contributions
1	2.65 / 468	HOMO-1 →LUMO (41%) HOMO-2 →LUMO (16%) HOMO-6 →LUMO (15%)
2	2.76 / 449	HOMO →LUMO+2 (78%)
3	2.99 / 415	HOMO →LUMO (86%)
4	3.11 / 399	HOMO-2 →LUMO+1 (30%) HOMO-1 →LUMO+1 (26%) HOMO-1 →LUMO (17%)
5	3.27 / 379	HOMO →LUMO+3 (88%)

Table S2: Calculated 5 lowest **singlet** emission energies (wavelengths), oscillator strength and molecular orbital transitions for Complex **1**.

transition	$E\left(eV\right)/\lambda\left(nm\right)$	Oscillator strength	major $MO \rightarrow MO$ contributions
1	3.03 / 409	0.0002	HOMO →LUMO (89%)
2	3.25 / 382	0.0365	HOMO-1 →LUMO (85%)
3	3.64 / 341	0.0029	HOMO →LUMO+1 (90%)
4	3.83 / 324	0.0224	HOMO-2 →LUMO (40%)
5	3.87 / 320	0.1613	HOMO →LUMO+3 (68%)

HOMO →LUMO+2 (20%)

transition	$E\left(eV\right)/\lambda\left(nm\right)$	major $MO \rightarrow MO$ contributions
1	2.65 / 468	HOMO-1 →LUMO (42%) HOMO-3 →LUMO (14%)
2	2.78 / 446	HOMO →LUMO+5 (37%) HOMO →LUMO+4 (14%)
3	3.03 / 409	HOMO →LUMO (87%)
4	3.14 / 395	HOMO-1 →LUMO+1 (25%) HOMO-3 →LUMO+1 (24%) HOMO-1 →LUMO (15%)
5	3.16 / 392	HOMO-4 →LUMO+3 (24%) HOMO-6 →LUMO+2 (14%)

Table S3: Calculated 5 lowest **triplet** emission energies (wavelengths) and molecular orbital transitions for Dendrimer **2**.

Table S4: The calculated 5 lowest **singlet** emission energies (wavelengths), oscillator strength and molecular orbital transitions of Dendrimer **2**.

transition	$E\left(eV\right)/\lambda\left(nm\right)$	Oscillator strength	major $MO \rightarrow MO$ contributions
1	3.06 / 405	0.0002	HOMO →LUMO (89%)
2	3.26 / 380	0.0306	HOMO-1 →LUMO (84%)
3	3.67 / 338	0.0003	HOMO \rightarrow LUMO+2 (90%)
4	3.83 / 324	0.0155	HOMO-1 →LUMO+1 (30%) HOMO-3 →LUMO (27%)
5	3.89 / 319	0.0932	HOMO →LUMO+8 (57%) HOMO →LUMO+5 (16%)

Potential (V vs. Fc/Fc^{+}) Figure S10. Cyclic Voltammograms of Complex 1 and Dendrimer 2 in dichloromethane (oxidations) and tetrahydrofuran (reductions) in the presence of 0.1 M tetra-*n*-butylammonium perchlorate at room temperature.