A Melamine-Based Organic-Inorganic Hybrid Material Revealing

Excellent Optical Performance and Moderate Thermal Stability

Lehui Liu,^{a,b} Zhiyong Bai,^c Lei Hu,^d Dongshan Wei^e, Zhoubin Lin^{*a, b,} and Lizhen Zhang^{*a, b,} ^a Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China ^b Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China

^c University of Chinese Academy of Sciences, Beijing 100049, P. R. China

^d School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404100, China

^eSchool of Electronic Engineering, Dongguan University of Technology, Dongguan, 523808, China

Atom	x	У	z	U(eq)
Zn1	9115.3(11)	4349(2)	7445.3(8)	28.6(3)
Cl1	9919(2)	2555(3)	9047.0(15)	33.5(4)
Cl2	10016(2)	7455(3)	7775.4(18)	38.3(5)
C13	9827(2)	2721(4)	6011.4(16)	37.9(5)
C1	4046(8)	5759(12)	6685(6)	26.4(15)
C2	6133(8)	5094(11)	7955(6)	23.8(15)
C3	6118(8)	5127(12)	6058(6)	25.2(16)
C4	5871(8)	5669(12)	1973(6)	26.8(16)
C5	3787(8)	5090(12)	2619(6)	23.8(15)
C6	3783(8)	5153(12)	668(6)	25.5(16)
N1	4719(7)	5605(11)	7763(5)	27.1(14)
N2	4708(7)	5520(11)	5805(5)	30.6(16)
N3	6898(6)	4838(10)	7117(5)	23.9(14)
N4	6831(7)	5094(13)	5219(5)	40(2)
N5	2650(7)	6211(14)	6459(6)	41.4(19)
N6	6815(7)	4901(11)	9011(5)	32.8(17)
N7	3054(7)	4859(11)	1524(5)	29.2(16)
N8	5201(7)	5502(12)	878(5)	29.7(15)
N9	5187(7)	5532(11)	2852(5)	28.8(14)
N10	3057(7)	4843(10)	3428(5)	31.2(16)
N11	3037(8)	5090(13)	-367(5)	42(2)
N12	7271(7)	6028(13)	2201(6)	39.1(18)

Table S1. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for compound 1. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

p			L		· · · · · · · · · · · · · · · · · · ·	
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Znl	21.9(5)	37.1(6)	25.6(5)	-0.4(5)	2.3(4)	0.4(6)
Cl1	25.5(8)	42.2(11)	31.3(9)	6.9(9)	2.1(7)	1.3(8)
C12	28.0(9)	35.7(11)	50.9(12)	-5.2(10)	7.5(8)	-3.5(9)
C13	29.1(10)	53.0(13)	30.2(9)	-5.9(10)	2.7(7)	7.3(10)
C1	21(3)	32(4)	26(4)	-1(3)	4(3)	1(3)
C2	22(3)	28(4)	22(3)	1(3)	4(3)	4(3)
C3	21(3)	34(4)	20(4)	0(3)	3(3)	0(3)
C4	24(4)	35(4)	20(3)	3(3)	0(3)	-3(3)
C5	21(3)	30(4)	19(3)	-2(3)	1(3)	1(3)
C6	23(4)	33(4)	19(3)	-2(3)	1(3)	0(3)
N1	23(3)	38(4)	19(3)	2(3)	3(2)	-1(3)
N2	22(3)	48(5)	20(3)	-1(3)	2(2)	4(3)
N3	17(3)	37(4)	16(3)	0(3)	2(2)	1(3)
N4	22(3)	81(6)	15(3)	5(3)	1(2)	14(3)
N5	23(3)	75(6)	25(3)	3(4)	2(3)	5(4)
N6	24(3)	56(5)	17(3)	1(3)	3(2)	6(3)
N7	17(3)	44(4)	25(3)	-2(3)	1(2)	-1(3)
N8	21(3)	47(4)	19(3)	0(3)	2(2)	-1(3)
N9	26(3)	38(4)	22(3)	-1(3)	5(2)	1(3)
N10	25(3)	44(5)	25(3)	2(3)	6(3)	-2(3)
N11	24(3)	77(6)	21(3)	-1(3)	-2(3)	-6(3)
N12	22(3)	64(5)	30(4)	6(4)	3(3)	-4(4)
Table S3. Bon	d Lengths for c	ompound 1.				
Atom	Atom	Lengtł	n/Å	Atom	Atom	Length/Å
Zn1	C11	2.282((2)	N9	C5	1.316(9)
Zn1	Cl2	2.260((3)	N8	C6	1.319(9)
Zn1	C13	2.269((2)	N9	C4	1.355(9)
Zn1	N3	2.057((6)	N8	C4	1.353(9)
N1	C1	1.336(10)	N6	C2	1.316(9)
N1	C2	1.340((9)	N11	C6	1.307(9)
N2	C1	1.349((9)	N12	C4	1.305(10)
N2	C3	1.319((9)	N4	C3	1.327(9)
N3	C2	1.369((9)	N7	C5	1.374(9)
N3	C3	1.356((9)	N7	C6	1.368(9)
N10	C5	1.316((9)	N5	C1	1.313(10)

Table S2. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for compound 1. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

		· · · ·					
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Cl3	Zn1	Cl1	107.53(10)	N6	C2	N1	117.4(7)
Cl2	Zn1	Cl1	107.01(9)	N2	C3	N3	124.7(7)
Cl2	Zn1	C13	115.20(10)	N2	C3	N4	117.3(7)
N3	Zn1	Cl1	113.18(18)	N4	C3	N3	117.9(7)
N3	Zn1	C13	111.75(18)	N10	C5	N9	120.8(7)
N3	Zn1	C12	102.2(2)	N10	C5	N7	118.4(7)
C2	N3	Zn1	122.4(5)	N9	C5	N7	120.7(7)
C3	N3	Zn1	122.2(5)	N8	C6	N7	121.0(6)
C3	N3	C2	115.2(6)	N11	C6	N8	120.6(7)
C1	N1	C2	116.2(6)	N11	C6	N7	118.3(7)
C3	N2	C1	116.0(6)	N8	C4	N9	124.7(7)
C5	N9	C4	117.1(6)	N12	C4	N9	117.4(7)
C6	N8	C4	116.8(6)	N12	C4	N8	117.9(7)
C6	N7	C5	119.4(6)	N1	C1	N2	124.5(7)
N1	C2	N3	123.3(6)	N5	C1	N1	118.1(7)
N6	C2	N3	119.2(6)	N5	C1	N2	117.4(7)

 Table S4. Bond Angles for compound 1.

Table S5. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for compound 1.

Atom	x	У	Z	U(eq)
H4A	6371.87	5322.84	4542.08	48
H4B	7751.81	4842.53	5351.99	48
H5A	2195.93	6398.66	6999.14	50
H5B	2191.16	6319.94	5772.26	50
H6A	6352.49	5100.81	9544.39	39
H6B	7722.84	4574.24	9166.33	39
H7	2146.35	4532.24	1378.58	35
H10A	3495.69	4969.75	4119.71	37
H10B	2142.69	4554.08	3265.69	37
H11A	3470.72	5276.17	-918.28	50
H11B	2113.21	4861.61	-495.66	50
H12A	7738.44	6151.01	1664.19	47
H12B	7726.77	6142.34	2889.22	47

Figure S1. The Powder X-ray diffraction of compound 1.

Lsec: 18.2 0 Cnts 0.000 keV Det: Octane Plus Det

Figure S2. The Energy-dispersive X-ray Spectroscopy of compound 1.

Figure S3. Room temperature powder IR spectrum of compound 1.

Table S6 Wavenumbers of the bands observed in the powder infrared spectra of compound 1.

Wavenumbers (cm ⁻¹)	Tentative assignment
3457	NH ₂ asym stretch
3371	NH ₂ asym stretch and N-HCl stretch
3140	N-HN stretch
1716, 1676, 1645	NH ₂ bend
1525, 1482	Side-chain asym C-N stretch
1347	Ring: semi-circle stretch
779	Side-chain out-of-plane C-N bend
608	NH ₂ bend
459	Combination tone: NH2 bend-NH2 rock

Figure S4. The thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) curves of compound **1**.

Figure S5. The H-Bonds of compound **1**.

Table S7. Hydrogen-bonding geometry (A, °) of compound 1	
--	--

Donor HAcceptor	[ARU]	D - H	HA	DA	D - HA
N4H4A…N9	[1555.02]	0.86	2.13	2.984(9)	173
N4H4B…Cl3	[-]	0.86	2.41	3.198(8)	152
N5H5A…Cl2	[1455.01]	0.86	2.52	3.306(7)	153
N5H5B…Cl3	[2656.01]	0.86	2.73	3.544(8)	158
N6H6A…N8	[1556.02]	0.86	2.14	2.996(9)	178
N6H6B…Cl1	[-]	0.86	2.49	3.297(7)	156
N7H7…Cl1	[2656.01]	0.86	2.78	3.274(7)	118
N7H7…Cl2	[2646.01]	0.86	2.82	3.547(7)	143
N10H10A…N2	[1555.01]	0.86	2.16	3.017(9)	175
N10H10B…Cl2	[2646.01]	0.86	2.57	3.356(7)	152
N11H11A…N1	[1554.01]	0.86	2.18	3.034(9)	175
N11H11B…Cl1	[1454.01]	0.86	2.54	3.328(8)	152
N12H12A…Cl1	[2756.01]	0.86	2.69	3.447(7)	148
N12H12B…Cl3	[2756.01]	0.86	2.63	3.312(7)	137

Translation of ARU-Code to CIF and Equivalent Position Code:

 $[2646.] = [2_646] = 1-x, -1/2 + y, 1-z; [1556.] = [1_556] = x, y, 1 + z; [1455.] = [1_455] = -1 + x, y, z'; [2656.] = [2_656] = 1-x, 1/2 + y, 1-z; [1554.] = [1_554] = x, y, -1 + z; [1454.] = [1_454] = -1 + x, y, -1 + z; [2756.] = [2_756] = 2-x, 1/2 + y, 1-z.$

Figure S6. (a)Compound 1 achieving extinction. (b)The thickness of the crystal.

Figure. S7 Electronic band structures of compound 1.

Table S8. Calculation of dipole moment for [ZnNCl₃] polyhedral for unit cells.

Species	x-component	y-component	z-component	Total magnitude
[Zn(1)NCl ₃]	-3.3878598	0.2800433	-1.42552	3.686207
[Zn(2)NCl ₃]	3.3878924	0.2800701	1.425489	3.686228