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1. Experimental Section

Synthesis of 5-(1,2,2-triphenylvinyl)thiophene-2-carbaldehyde (5-TPVTC). A
mixture of 1-bromo-1,2,2-triphenylethylene (1.00 g, 3.0 mmol), 5-Formyl-2-
thiopheneboronic acid (0.70 g, 4.5 mmol) and 2M potassium carbonate (4.5 mmol ) in
toluene and tetrahydrofuran (V:V=2:1), Pd(PPh;), (50 mg, 0.043 mmol) added under the
protection of Nj, and the mixture was reacted at 80°C for 20 h. After the reaction was
completed, the mixture was poured into water and extracted three times with
dichloromethane, and the organic layer was dried by MgSO,. The solvent was removed
by under reduced pressure and purified by silica gel column chromatography. The final
crude product was recrystallized in ethanol to produce a bright yellow solid with a yield
of 38.4%. Molecular formula: C,sH;30S. '"H NMR (600 MHz, CDCls): 8 9.72 (s, 1H),
7.40 (d, J =3.9 Hz, 1H), 7.25 (dd, J = 5.3, 2.2 Hz, 4H), 7.19 — 7.14 (m, 5H), 7.13 — 7.11
(m, 2H), 7.07 — 7.05 (m, 3H), 6.96 (dd, J = 6.7, 3.1 Hz, 2H), 6.62 (d, J = 3.9 Hz, 1H); 3C
NMR (150 MHz, CDCls): 6 182.87, 157.01, 142.87, 142.36, 142.22, 135.63, 131.17,
130.89, 130.59, 130.50, 128.55, 128.07, 127.93, 127.71, 127.48, 127.09; HRMS (ESI)
m/z: [M+H]", 367.1147, [M+Na]*, 389.0962 (calcd. for C,5H;50S, 366.11).

Synthesis of 4-(1,2,2-triphenylvinyl)thiophene-2-carbaldehyde (4-TPVTC). The
synthesis of 4-TPVTC followed the procedure of 5-TPVTC by replacing 5-Formyl-2-
thiopheneboronic acid with 4-bromothiophen-2-aldehyde. The crude product was finally
acquired by recrystallization in ethanol to give a light yellow solid with a yield of
55.2%. Molecular formula: C,sH;30S. 'H NMR (600 MHz, CDCl3) 6 9.64 (d, J
= 1.2 Hz, 1H), 7.21 (t,J = 3.1 Hz, 4H), 7.16 — 7.14 (m, 4H), 7.12 (dd, J = 6.5,
2.2 Hz, 2H), 7.08 (q, J = 3.3 Hz, 5H), 6.99 (dd, J = 6.2, 2.5 Hz, 2H); 13C
NMR (150 MHz, CDCl;) & 183.10, 145.46, 143.26, 142.70, 142.45, 142.42,
142.28, 139.29, 135.40, 134.00, 131.06, 131.02, 130.74, 128.37, 128.06,
127.74, 127.33, 127.09, 126.79, HRMS (ESI) m/z: [M+H]",367.1154,
[M+Na]*, 389.0974 (calcd. for CsH50S, 366.11).
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Synthesis of (Z)-2-(4-(trifluoromethyl)phenyl)-3-(4-(1,2,2-triphenylvinyl)
thiophen-2-yl)acrylonitrile (4-FTPVTA). A certain amounts of 4-(1,2,2-
triphenylvinyl)thiophene-2-carbaldehyde (4-TPVTC) (1.01 g, 3.0 mmol), 4-
trifluoromethylphenylacetonitrile (0.83 g, 4.5 mmol) and sodium ethanol (20%
W/W) were dissolved in ethanol, and the mixtures were heated to reflux for
4h. After removing the solvent under reduced pressure, the residue was
purified by silica gel chromatography using petroleum ether and ethyl acetate
as eluent to obtain crude product, and then recrystallized with ethanol to
obtain the final product as light yellow solid (yield 50.0%). Molecular
formula: C34H,,F3NS. 'H NMR (600 MHz, CDCl;): 67.68 — 7.63 (m, 4H),
7.49 (s, 1H), 7.25 — 7.20 (m, 3H), 7.18 — 7.13 (m, 5H), 7.09 (q, J = 3.2, 2.6
Hz, 5H), 7.07 (d, J = 1.3 Hz, 1H), 7.03 — 6.98 (m, 3H); '3C NMR (150 MHz,
CDCl;): 08144.82, 142.56, 142.15, 137.42, 137.28, 136.30, 136.03, 134.06,
131.91, 131.10, 131.04, 130.74, 128.30, 127.98, 127.72, 127.22, 126.99,
126.73, 126.07, 126.04, 125.84, 106.08; HRMS (ESI) m/z: [M+H]",534.1501,
[M+Na]*,556.1325 (calcd. for C34H,,F3NS, 533.14).

Synthesis of (Z)-4-(1-cyano-2-(4-(1,2,2-triphenylvinyl)thiophen-2-yl)-
vinyl)benzonitrile (4-CTPVTB). Synthesis of 4-CTPVTB followed the
procedure of 4-FTPVTA by replacing 4-cyanophenylacetonitrile with 4-
trifluoromethylbenzyl cyanide. The final crude product is yellow solid (yield
52.0%). Molecular formula: C34H,,F;NS.'"H NMR (600MHz, CDCl5):6 7.70 —
7.64 (m, 4H), 7.51 (s, 1H), 7.25-7.20 (m, 3H), 7.19 — 7.12 (m, 5H), 7.09 (q, J
= 3.6 Hz, 6H), 7.04 (s, 1H), 6.99 (dd, J = 6.6, 3.0 Hz, 2H); '3C NMR (150
MHz, CDCl;3): & 145.00, 143.32, 142.50, 142.27, 138.34, 137.78, 136.92,
135.88, 133.93, 132.80, 132.51, 131.08, 131.01, 130.73, 128.32, 128.00,
127.72, 127.24, 127.03, 126.77, 126.01, 118.30, 117.15, 112.12, 105.62;
HRMS (ESI) m/z: [M+H]", 491.1583, [M+Na]", 513.1398 (calcd. for
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C;34H,,F3NS, 490.15).

Characterization of UV-Visible and Fluorescence Properties of All Samples.
UV—Vis absorption spectra were recorded using an Agilent Cary 5000 UV-Vis-NIR
spectrophotometer. Steady PL spectra of all samples were performed on an Edinburgh
Instruments model FLS980 fluorescence spectrophotometer equipped with a xenon arc
lamp using a front face sample holder. Time-resolved fluorescence measurements were
conducted with EPL-series lasers. The absolute PL quantum yields of all samples were
determined using an integrating sphere equipped in FLS980 spectrophotometer for at

least three times.

2. Computational Details

All the calculations were performed with density functional theory (DFT) and time-
dependent density functional theory (TDDFT) implemented in Gaussian 09 program
package.! The ground state equilibrium geometries and the normal modes of vibration of
the single-molecules of 4-TPVTC, 4-FTPVTA and 4-CTPVTB were computed using
density functional theory (DFT) with the hybrid B3LYP functional at 6-311+G(d,p)
level.> Excitation energies and absorption maxima of all the four molecules and their E-
products were calculated using M062X functional with 6-311+G(d,p) level based on the

optimized structure in acetonitrile with SCRF.3
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3. Supplementary Schemes and Figures
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Scheme S1. Synthesis routes of 5-TPVTC, 4-TPVTC, 4-FTPVTA and 4-CTPVTB.
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Figure S1. Time-resolved PL decay curve of 5-TPVTC in solid state.
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Figure S2. PL spectra of 5-TPVTC in THF with addition of different amount of water.
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Figure S3. PL spectra of 4-FTPVTA (a) and 4-CTPVTB (b) in THF with addition of

different amount of water.
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Figure S4. Time-resolved PL decay curves of 4-FTPVTA (a) and 4-CTPVTB (b) in solid.
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Figure S5. Changes of PL spectra and images of 4-FTPVTA (a) and 4-CTPVTB (b) in
solid after 3 min of UV irradiation at 365 nm.
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Figure S6. UV-visible spectra of 4-TPVTC, 4-FTPVTA and 4-CTPVTB in THF at 25.0
uM.
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Figure S7. Time-resolved PL spectra of 4-TPVTC (a), 4-FTPVTA (b) and 4-CTPVTB (c)

in film under continuous UV light irradiation.
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4. Supplementary Tables

Table S1. Experimental and computational data for Sp—S; absorption maxima of 4-
TPVTC, 4-FTPVTA, 4-CTPVTB and their cyclized forms

Compounds Aap® (nm) g* (L-mol™'-cm™) Aab? (nm) i

The open form 310 13596 309 0.1006

4-TPVTC
The closed form 512 - 548 0.1980
The open form 378 14236 376 0.2879

4-FTPVTA
The closed form 565 - 546 0.4672
The open form 390 12092 408 0.2913

4-CTPVTB
The closed form 570 - 561 0.5494

@ The experimental data in THF. ? The calculated values with M062X functional. A,,, €, and T
represent absorption maximum, molar absorption coefficient and oscillator strength
respectively.
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5. NMR and HRMS Spectra of Compounds
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Figure S8. 'H NMR spectrum of 5-TPVTC in CDCl;
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Figure S9. 3C NMR spectrum of 5-TPVTC in CDCls;.
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Figure S11. 3C NMR spectrum of 4-TPVTC in CDCls.
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Figure S12. '"H NMR spectrum of 4-FTPVTA in CDCl;.

80°901-

LELIL
%_vﬁ/
0971

P0'9Z1

LO°9TT
€L9TIY
66'9TT1
LT
LTy

108 104

112

120

124

86°LTT+
0€'8TI~
FLOST
:..SJ
OTIET 7
I6'TET

90°PEL”
€0°9¢€ T~

&
Q
0€°9¢T”. 0
wm.hmi\
FLET
ST'THI
\

98" TH 1 @ =\
8T X
|

LEEP]

Nm.vi\ O @

128

144 140 136 132

148

116

f1 (ppm)
Figure S13. 3C NMR spectrum of 4-FTPVTA in CDCl;.
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Figure S16. High-resolution mass spectrum of 5-TPVTC.
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Figure S17. High-resolution mass spectrum of 4-TPVTC.
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Figure S18. High-resolution mass spectrum of 4-FTPVTA.

x1g 4
34

3.2

513.1398
(M+Na)+

28

264

24

224

514.1430
(M+Na)+

491.1583
(M+H)+

515.1433
(M+Na)+

493.1587
(M+H)+

a

486 488 490 492 494 496 498 500 502 504 506 508 510 512 514 516 5§18 520
Counts vs. Mass-to-Charge (miz)

Figure S19. High-resolution mass spectrum of 4-CTPVTB.
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