Anthradithiophene-Based Organic Semiconductors through Regiodirected Double Annulations

Andrea Nitti, ${ }^{a}$ Giacomo Forti, ${ }^{a}$ Gabriele Bianchi, ${ }^{\text {b }}$ Chiara Botta, ${ }^{c}$ Francesca Tinti, ${ }^{\text {d Massimo }}$ Gazzano, ${ }^{d}$ Nadia Camaioni, ${ }^{d}$ Riccardo Po, ${ }^{b}$ and Dario Pasini* ${ }^{* a}$

${ }^{\text {a }}$ Department of Chemistry and INSTM Research Unit, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
${ }^{\mathrm{b}}$ Research Center for Renewable Energies and Environment, Istituto Donegani, Eni Spa, Via Fauser 4, 28100 Novara, Italy
${ }^{\text {c }}$ SCITEC-CNR, Consiglio Nazionale delle Ricerche and, INSTM Research Unit, Istituto di Scienze e Tecnologie Chimiche 'G. Natta', Via Golgi 19, 20133 Milano, Italy
${ }^{d}$ ISOF CNR - Istituto per la Sintesi Organica e la Fotoreattività, National Research Council, Via P.
Gobetti 101, 40129 Bologna, Italy
Email: dario.pasini@unipv.it

Table of Contents

1.General experimental S2
2. Synthesis of new compounds S5
3. Additional tables and figures S12
4. Spectra of new compounds S21
5. References S44

1. General experimental

All commercially available reagents and solvents were purchased from Sigma-Aldrich, Fluorochem and Alfa Aesar. They were all used as received. 2,5-Dibromoterephthalaldehyde $\mathbf{1}^{1}$ and compound 7 were synthesized according to literature. ${ }^{2}$ Flash chromatography was carried out using Merck silica gel 60 (pore size $60 \AA, 270-400 \mathrm{Mesh}$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded from solutions in deuterated solvents on 300 Bruker or 400 Jeol spectrometers with the residual solvent as the internal standard. Mass spectra of pure compounds were recorded using an Electron Spray Ionization Agilent Technologies mass spectrometer, Direct Exposure Probe mass spectrometer, GC-MS ThermoScientific spectrometer and a Bruker Autoflex MALDI-TOF in positive reflectron mode with or without trans-2-(3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene)malononitrile (DCTB) as the matrix. The spectra were recorded also without the matrix, giving in most cases equivalent results due to the direct formation of the radical cation of the relevant species. The UV-Vis spectroscopic studies were recorded using JASCO V-550 spectrophotometer. The photoluminescence experiments and lifetime experiments were recorded using Horiba Fluorolog ${ }^{\circledR}$ - 3 Model FL3-22iHR. Cyclic voltammetry experiments were carried out using a Epsilon-Eclipse potentiostat with a polished glassy carbon working electrode, platinum counter electrode, silver pseudo-reference electrode, and tetrabutylammonium hexofluorophosphate (recrystallized three times from EtOH) as a supporting electrolyte. Sample concentrations were between 0.2 and 1.0 mM in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. All electrochemical measurements were referenced to the $\mathrm{Fc} / \mathrm{Fc}^{+}$redox couple. Band gaps were estimated using the onset of the initial oxidation and reduction events, and $\mathrm{E}_{\text {Номо }}$ and $\mathrm{E}_{\text {LUMO }}$ were estimated given an $\mathrm{E}_{\text {Номо }}$ of 4.80 eV for ferrocene. In all figures the first scan is shown, which is similar to subsequent scans. ${ }^{3}$ Theoretical energy calculations were performed with density functional theory (DFT) calculations using the DFT/B3LYP framework with the DZP basis set. Solubilizing alkyl groups were replaced with methyl groups in small molecules $\mathbf{9}$ and $\mathbf{1 0}$ for simplicity.

Hole mobility measurements. Hole-only devices were prepared for the investigation of mobility of positive charge carriers. The devices had the sandwiched structure ITO/PEDOT:PSS/PDTIDTBT/MoO3/Au, where ITO is indium tin oxide and PEDOT:PSS is poly(3,4-ethylenedioxythiophene)/polystyrene sulphonic acid (CLEVIOS P VP AI 4083, H.C. Starck). ITO-coated glass substrates were first cleaned in detergent and water, then ultrasonicated in acetone and isopropyl alcohol for 15 min each. The layer of PEDOT:PSS ($\sim 40 \mathrm{~nm}$) was spin-coated at 4000 rpm onto the ITO-glass substrates, and baked in an oven at $120^{\circ} \mathrm{C}$ for 10 min . The small molecule layer was deposited by spin-coating (280 rpm) from a chloroform solution ($40 \mathrm{~g} \cdot \mathrm{~L}^{-1}$) to a thickness of 600 nm . The MoO_{3} layer $(5 \mathrm{~nm})$ and the Au top electrode $(100 \mathrm{~nm})$ were thermally evaporated at a base pressure of $4 \times 10^{-6} \mathrm{mbar}$ through a shadow mask defining a device active area of $8 \mathrm{~mm}^{2}$. The electrical characterization of hole-only devices was carried out at room temperature in an Ar-filled glove-box. $J-V$ characteristics were taken using a digital source meter (Keithley model 2400) and Impedance Spectroscopy measurements were performed using an Agilent 4294A impedance analyzer. The impedance measurements were done in the frequency range $40 \mathrm{~Hz}-1 \mathrm{MHz}$, with an amplitude of the harmonic voltage modulation of 20 mV . The DC bias was varied in the range $0 \mathrm{~V}-30 \mathrm{~V}$. AFM images were acquired on films with a thickness comparable to that used for the devices (Figure S9).

The transit time of charge carriers τ can be inferred from the peak frequency of the negative differential subsceptance or from the peak frequency of the imaginary part of impedance $(\operatorname{ImZ}) .{ }^{4}$ Figure S7 shows the frequency dependence of ImZ, at various values of the dc bias, for a hole-only device based on small molecule 9, indicating that clear peaks were observed, shifting toward higher frequencies as the dc voltage was increased. The transit time of charge carriers was obtained from the peak frequency through $\tau=k \tau_{\mathrm{p}}$, where τ_{p} is the time constant corresponding to the peak frequency of $\operatorname{Im} Z$ and k a constant dependent on the dispersion degree. The value of 0.44 was assumed for k, which has been reported for a moderate degree of dispersion. ${ }^{5}$ The values of hole mobility μ was calculated
by using the well-known expression $\mu=d /(E \tau)$, where d is the film thickness. As shown in Figure S7, the hole mobility of spin-coated small molecule $\mathbf{9}$ exhibits an almost field-independent behavior, suggesting a low energetic disorder. ${ }^{6}$ The mean value of the data shown in Figure 5 is 2.45×10^{-5} $\mathrm{cm}^{2} \cdot \mathrm{~V}^{-1} \cdot \mathrm{~s}^{-1}$, a remarkable value for the bulk mobility of a low-molecular weight and spin-coated compound.

Given the rough independence on field, the hole mobility was also extracted from the current-density versus voltage ($J-V$) characteristic of the hole-only device made of small molecule 9 . In figure $\mathrm{S} 8, J$ is reported as a function of square V, showing the excellent linear behavior expected for the space-charge-limited current in an one-carrier only device, as predicted by the Mott-Gurney low: ${ }^{7}$
$J=\frac{9}{8} \varepsilon \varepsilon_{0} \mu \frac{V^{2}}{d^{3}}$
where ε and ε_{0} are the relative dielectric constant and the permittivity in vacuum, respectively. By plotting J as a function of V^{2}, the slope of the line is strictly correlated with mobility. A value of $2.38 \times 10^{-5} \mathrm{~cm}^{2} \cdot \mathrm{~V}^{-1} \cdot \mathrm{~s}^{-1}$ was calculated by assuming $\varepsilon=3$, in excellent agreement with the mean hole mobility obtained with impedance spectroscopy.

X-ray diffraction (XRD) investigation. XRD investigation was conducted on films (600 nm thick) of compound 9 spin-coated from a chloroform solution onto a glass substrate. XRD patterns were collected in Bragg-Brentano geometry by means of a Malvern Panalytical MRD system equipped with a copper source $(\lambda=0.15418 \mathrm{~nm})$. Each step of $0.05^{\circ} 2$-theta was investigated for 80 s with a multi-channel solid-state detector, in the range $2^{\circ}-60^{\circ}$. The contribution of the glass support was subtracted before plotting the data.

2. Synthesis of New Compounds

Anthra[1,2-b:5,6-b']dithiophene-4,10-dicarboxylic acid (3a)

A three-necked flask equipped with condenser and mechanical stirring was charged in argon atmosphere with 3-thiopheneacetic acid ($28.4 \mathrm{~g}, 0.2 \mathrm{~mol}, 2 \mathrm{eq}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(2.25 \mathrm{~g}, 0.01 \mathrm{~mol}, 0.01 \mathrm{eq})$, $\mathrm{PPh}_{3}(5.25 \mathrm{~g}, 0.02 \mathrm{~mol}, 0.1 \mathrm{eq}), \mathrm{K}_{2} \mathrm{CO}_{3}(55.3 \mathrm{~g}, 0.4 \mathrm{~mol}, 4 \mathrm{eq})$ and dry DMAc (2 L). The reaction mixture was warmed to $110{ }^{\circ} \mathrm{C}$ and 2,5-dibromoterephthalaldehyde $1(29.2 \mathrm{~g}, 0.1 \mathrm{~mol}, 1 \mathrm{eq})$ was added portionwise in 10 min under inert atmosphere. The reaction mixture was kept at the same temperature under stirring for 24 h , and then the reaction solvent was removed under reduced pressure. The dark crude reaction mixture was dissolved in distilled water (1 L) and HCl conc (50 mL) was added dropwise until full acidity $(\mathrm{pH}=1)$. The precipitate was filtered under reduced pressure and washed with $\mathrm{MeOH}(500 \mathrm{~mL})$. The dark powder was purified by Soxhlet extraction with acetone for 24 h to give $\mathbf{3 a}$ as a black powder ($26.9 \mathrm{~g}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta: 13.37$ (s, 2H), $9.19(\mathrm{~s}, 2 \mathrm{H}), 8.90(\mathrm{~s}, 2 \mathrm{H}), 8.31(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta: 167.9,138.7,134.8,131.1,130.1,128.2,127.6,126.4,125.8,125.0$. ESI-MS: 377 [M-1]-. Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}_{2}$: C 63.5; H 2.7; found: C 63.7; H 2.9.

General procedure for the alkylation of compound 3a. Synthesis of compound 3b. 9(bromomethyl)nonadecane ($36.1 \mathrm{~g}, 100 \mathrm{mmol}, 2 \mathrm{eq}$) was added to a solution of compound $\mathbf{3 a}$ (18.9 $\mathrm{g}, 50 \mathrm{mmol}, 1 \mathrm{eq}), \mathrm{Bu} u_{4} \mathrm{NI}(3.69 \mathrm{~g}, 10 \mathrm{mmol}, 0.2 \mathrm{eq}), \mathrm{K}_{2} \mathrm{CO}_{3}(13.82 \mathrm{~g}, 100 \mathrm{mmol}, 2 \mathrm{eq})$ in dry DMAc $(500 \mathrm{~mL})$ under inert atmosphere and then stirred at $130^{\circ} \mathrm{C}$ for 48 h . After removal of solvent under reduced pressure, the crude reaction mixture was dissolved in hexane:AcOEt (98:2) and filtered
through a short silica gel path $(4 \mathrm{~cm})$. The organic solvent was removed under reduced pressure, the crude reaction mixture was dissolved in CHCl_{3} and precipitated in EtOH and ${ }^{\mathrm{i}} \mathrm{PrOH}$ (twice) to give 3b as a yellow powder ($23.9 \mathrm{~g}, 51 \%$).

Bis(2-octyldodecyl) anthra[1,2-b:5,6-b']dithiophene-4,10-dicarboxylate (3b). Yellow powder (51\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.79(\mathrm{~s}, 2 \mathrm{H}), 8.69(\mathrm{~s}, 2 \mathrm{H}), 8.36(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J$ $=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.92(\mathrm{~s}, 2 \mathrm{H}), 1.57-1.13(\mathrm{~m}, 64 \mathrm{H}), 0.95-0.75(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 166.6,139.1,134.6,130.9,130.0,128.6,126.6,125.7,125.2,124.6,77.2$, 76.7, 76.3, 67.8, 37.3, 31.6, 31.4, 29.8, 29.4, 29.4, 29.3, 29.1, 26.6, 22.4, 13.8. DEP-MS $m / z(\%): 938$ $[M]^{+}(100)$. Anal. calcd. for $\mathrm{C}_{60} \mathrm{H}_{90} \mathrm{O}_{4} \mathrm{~S}_{2}$: C 76.7; H 9.7; found: C 76.8; H 9.7.

Bis(n-octyl) anthra[1,2-b:5,6-b']dithiophene-4,10-dicarboxylate (3c). Yellow powder (48\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.77(\mathrm{~s}, 2 \mathrm{H}), 8.69(\mathrm{~s}, 2 \mathrm{H}), 8.34(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=5.3 \mathrm{~Hz}$, $2 \mathrm{H}), 4.46(\mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.57-1.19(\mathrm{~m}, 20 \mathrm{H}), 0.97-0.84(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 166.6,139.1,134.6,130.9,130.0,128.6,126.6,125.7,125.2,124.6,65.7$, 32.0, 29.5, 29.4, 29.0, 26.3, 22.9, 14.3. DEP-MS $m / z(\%): 602[M]^{+}(10)$. Anal. calcd. for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{~S}_{2}$: C 71.7; H 7.0; found: C 71.9; H 7.1.

Bis(2-etylhexyl) anthra[1,2-b:5,6-b']dithiophene-4,10-dicarboxylate (3d). Yellow powder (32\%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.77(\mathrm{~s}, 2 \mathrm{H}), 8.69(\mathrm{~s}, 2 \mathrm{H}), 8.34(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=5.3 \mathrm{~Hz}$, $2 \mathrm{H}), 4.39(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.92(\mathrm{~s}, 2 \mathrm{H}), 1.57-1.13(\mathrm{~m}, 16 \mathrm{H}), 0.95-0.75(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 165.6,139.1,133.9,131.0,130.3,128.6,126.6,125.8,125.2,124.3,65.6,32.1,29.5$, 29.4, 29.1, 26.3, 22.9, 14.5. DEP-MS $m / z(\%): 602[M]^{+}(100)$. Anal. calcd. for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{~S}_{2}:$ C 71.7; H 7.0; found: C 71.5; H 7.1.

Bis(2-ethylhexyl) 2,8-dibromoanthra[1,2-b:5,6-b']dithiophene-4,10-dicarboxylate (4).

N-Bromosuccinimide ($71 \mathrm{mg}, 0.4 \mathrm{mmol}, 4 \mathrm{eq}$) was added to a solution of compound $\mathbf{3 d}(60 \mathrm{mg}, 0.1$ $\mathrm{mmol}, 1 \mathrm{eq})$ in a mixture of CHCl_{3} and $\mathrm{AcOH}(8: 2,1 \mathrm{~mL})$ under inert atmosphere. The reaction mixture was kept under stirring at room temperature for 24 h . After removal of the solvent under reduced pressure, the crude reaction mixture was dissolved in hexane:AcOEt (98:2) and filtered through a short silica gel path $(4 \mathrm{~cm})$. The organic solvent was removed under reduced pressure to give 4 as a yellow powder ($18 \mathrm{mg}, 25 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.63(\mathrm{~s}, 2 \mathrm{H}), 8.57(\mathrm{~s}, 2 \mathrm{H})$, $8.34(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.92(\mathrm{~s}, 2 \mathrm{H}), 1.57-1.13(\mathrm{~m}, 16 \mathrm{H}), 0.95-0.75(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 165.6,139.1,133.9,131.0,130.3,128.6,126.6,125.8,125.2,124.3,65.6$, 32.1, 29.5, 29.4, 29.1, 26.3, 22.9, 14.5. DEP-MS $m / z(\%): 760[M]^{+}$(100). Anal. calcd. for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{Br}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$: C 56.9, H 5.3; found: C 56.8; H 5.4.

Bis(2-octyldodecyl) 2,8-bis(tributylstannyl)anthra[1,2-b:5,6-b']dithiophene-4,10-dicarboxylate

(5)

A solution of compound $\mathbf{3 b}(1 \mathrm{~g}, 1.06 \mathrm{mmol}$, 1eq) in dry THF (25 mL) under argon was cooled to $78{ }^{\circ} \mathrm{C}$. After 15 min , a solution of LDA (1 M in hexane, $4.26 \mathrm{~mL}, 4.26 \mathrm{mmol}, 4 \mathrm{eq}$) was added dropwise and kept for 2 h at the same temperature, then $\mathrm{Bu}_{3} \mathrm{SnCl}(722 \mu \mathrm{~L}, 2.66 \mathrm{mmol}, 2.5 \mathrm{eq})$ was added in one portion. The reaction mixture was kept at $-78^{\circ} \mathrm{C}$ for 30 min , and then it was warmed to room temperature and stirred overnight. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, most of the organic solvent was removed under reduced pressure, and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After removal of the solvent under reduced pressure, the reaction mixture was purified by flash chromatography on neutral alumina (n-hexane as the eluent) affording 5 as a pale yellow oil ($1.31 \mathrm{~g}, 81 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 8.91(\mathrm{~s}, 2 \mathrm{H}), 8.73(\mathrm{~s}, 2 \mathrm{H}), 8.41(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.92(\mathrm{~s}, 2 \mathrm{H}), 1.57-1.13$ $(\mathrm{m}, 16 \mathrm{H}), 0.95-0.75(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 167.7,149.8,145.0,139.7,136.4$, $135.0,131.3,130.4,128.9,125.5,65.6,32.1,29.5,29.4,29.1,26.3,22.9,14.5$. APCI-MS $m / z(\%):$ $1518[M]^{+}(100)$.
bis(2-octyldodecyl) 2-(tributylstannyl)anthra[1,2-b:5,6-b']dithiophene-4,10-dicarboxylate (6).

A solution of compound $\mathbf{5 d}(1 \mathrm{~g}, 1.06 \mathrm{mmol}, 1 \mathrm{eq})$ in dry THF $(25 \mathrm{~mL})$ under argon atmosphere was cooled to $-78^{\circ} \mathrm{C}$. After 15 min LDA (1 M in hexane, $1.59 \mathrm{~mL}, 1.59 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added dropwise and kept for 2 h at the same temperature, then $\mathrm{Bu}_{4} \mathrm{SnCl}(288 \mu \mathrm{~L}, 1.59 \mathrm{mmol}, 1.5 \mathrm{eq})$ was added in one portion. The reaction mixture was kept at $-78^{\circ} \mathrm{C}$ for 30 min , and then it was warmed to room temperature and stirred overnight. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, most of the organic solvent was removed under reduced pressure, and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 20 \mathrm{~mL}$). the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After removal of the solvent under reduced pressure, the reaction mixture was purified by flash chromatography on neutral alumina (n hexane as the eluent) affording pure compound 6 as a pale yellow oil ($627 \mathrm{mg}, 48 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64$ $(\mathrm{d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.96-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.19(\mathrm{~m}, 76 \mathrm{H}), 0.94(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 9 \mathrm{H}), 0.94-0.77(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 167.1,166.8,144.4,139.3,139.2$, $134.5,134.4,131.0,130.6,130.1,129.9,128.5,126.6,125.7,125.5,125.2,125.1,124.5,68.3,37.7$, $34.4,32.0,31.7,31.7,30.5,30.2,30.1,29.8,29.6,29.5,29.2,27.4,27.0,27.0,22.8,14.2,13.8,11.2$.

bis(2-octyldodecyl)

2,8-bis(4-(((2-octyldodecyl)oxy)carbonyl)naphtho[1,2-b]thiophen-2-

 yl)anthra[1,2-b:5,6-b']dithiophene-4,10-dicarboxylate (9).

A solution of compound 5 ($303 \mathrm{mg}, 0.2 \mathrm{mmol}, 1 \mathrm{eq}$), 2-octyldodecyl 2-bromonaphtho[1,2-b]thiophene-4-carboxylate 7 ($235 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$) in dry toluene (2 mL)was degassed for 5 min
under argon atmosphere. $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4.62 \mathrm{mg}, 4 \mu \mathrm{~mol}, 0.02 \mathrm{eq})$ was added in one portion, and the solution was further degassed for 10 min . The reaction mixture was heated at reflux under stirring for 24 h . The reaction solvent was removed under reduced pressure and the reaction mixture was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; petroleum ether: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 8: 2\right)$, to obtain compound $\mathbf{9}$ as a dark yellow solid (277 mg, 71\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.40(\mathrm{~s}, 2 \mathrm{H}), 8.28(\mathrm{~s}, 2 \mathrm{H}), 8.20(\mathrm{~s}, 2 \mathrm{H}), 8.18(\mathrm{~s}$, 2H), 8.13 (s, 2H), $7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 4.52(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.44(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~d}, J=$ $5.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.13(\mathrm{~m}, 128 \mathrm{H}), 0.82(\mathrm{dd}, J=12.9,6.0 \mathrm{~Hz}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 166.3,166.1,138.3,138.2,137.2,137.1,135.7,134.7,131.0,130.4,130.1,129.5,129.4,128.6$, $127.3,125.8,124.4,124.2,123.7,123.3,123.2,123.0,68.5,68.2,37.8,32.1,32.1,32.1,31.9,31.8$, 30.4, 30.0, 29.9, 29.9, 29.8, 29.6, $29.527 .2,22.8,22.8,14.2$. MALDI-TOF: $m / z[M]^{+}=1953.25$; calcd. for $\mathrm{C}_{126} \mathrm{H}_{182} \mathrm{O}_{8} \mathrm{~S}_{4}$: 1953.28.
tetrakis(2-octyldodecyl)

b'Jdithiophene-4,10-dicarboxylate) (10).

A solution of compound $\mathbf{6}(303 \mathrm{mg}, \quad 0.2 \mathrm{mmol}, 1 \mathrm{eq})$, 4,7-dibromo-5,6difluorobenzo[c][1,2,5]thiadiazole $\mathbf{8}(235 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq})$ in dry toluene (2 mL) was degassed for 5 min under argon atmosphere. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(4.62 \mathrm{mg}, 4 \mu \mathrm{~mol}, 0.02 \mathrm{eq})$ was added in one portion, and the solution was further degassed for 10 min . The reaction mixture was heated at reflux under
stirring for 24 h . The reaction solvent was removed under reduced pressure and the reaction mixture was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; petroleum ether: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 8: 2\right)$, to obtain compound $\mathbf{1 0}$ as a dark red solid ($277 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 8.77(\mathrm{~s}, 0 \mathrm{H}), 8.33-8.17(\mathrm{~m}, 0 \mathrm{H})$, $8.07(\mathrm{~s}, 0 \mathrm{H}), 7.81(\mathrm{~d}, J=22.4 \mathrm{~Hz}, 0 \mathrm{H}), 7.33(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 0 \mathrm{H}), 4.53(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 0 \mathrm{H}), 4.26(\mathrm{~d}, J$ $=4.3 \mathrm{~Hz}, 0 \mathrm{H}), 2.11(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 0 \mathrm{H}), 1.97-1.79(\mathrm{~m}, 0 \mathrm{H}), 1.80-1.09(\mathrm{~m}, 8 \mathrm{H}), 0.98-0.75(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 165.73,138.39,133.98,133.26,130.74,130.50,129.41,129.27$, $129.05,128.98,127.70,126.48,126.39,124.96,124.35,124.07,123.75,123.42,68.58,37.79,37.58$, $32.14,31.67,31.50,30.46,30.27,30.02,29.90,29.67,29.56,29.54,29.47,27.11,26.92,22.85,14.25$. MALDI-TOF: $m / z[M]^{++}=2045.09$; calcd. for $\mathrm{C}_{126} \mathrm{H}_{182} \mathrm{O}_{8} \mathrm{~S}_{4}: 2045.22$.

3. Additional Tables and Figures

Table S1. Optimization for the formation of ester derivatives $\mathbf{3}$

Entry	Compound	Reaction conditions	Yield [\%]
1	3 c	$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Br}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMAc}, 70^{\circ} \mathrm{C}$	8
2	3 c	$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Br}, \mathrm{KOH}, \mathrm{H}_{2} \mathrm{O}, 100{ }^{\circ} \mathrm{C}$	0
3	3 c	(a) oxalyl chloride in DMF, $100^{\circ} \mathrm{C}$, then (b) $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{OH} \mathrm{Et} 3 \mathrm{~N}_{3}, \mathrm{CHCl}_{3}$, $40^{\circ} \mathrm{C}$	0
4	3 c	(a) SOCl_{2}, toluene, at reflux, then (b) $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{OH}, \mathrm{Et}_{3} \mathrm{~N}$, THF, $60^{\circ} \mathrm{C}$	24
5	3 c	$\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Br}$ (2 eq), $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{eq}), \mathrm{Bu} \mathrm{H}_{4} \mathrm{NBr}(3 \mathrm{eq}), \mathrm{DMAc}, 130^{\circ} \mathrm{C}$	48
6	3d	1-bromo-2-ethylhexane (2 eq), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(3 \mathrm{eq}\right.$), $\mathrm{Bu}_{4} \mathrm{NBr}$ (3 eq), DMAc, $130^{\circ} \mathrm{C}$ (one pot)	41
7	3b	9-(bromomethyl)nonadecane, $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{eq}), \mathrm{Bu}_{4} \mathrm{NBr}$ (3 eq), DMAc, $130^{\circ} \mathrm{C}$ (one pot)	41
8	3b	9-(bromomethyl)nonadecane, $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3 eq), $\mathrm{Bu}_{4} \mathrm{NBr}$ (3 eq), DMAc, $130^{\circ} \mathrm{C}$ (from isolated 3a)	51

Table S2. E factor calculations for compounds 3a and 3b.

	Amount (g)	Waste (g)
2,5-dibromoterephthalaldehyde	29.19	5.55
3-thiopheneacetic acid	28.43	5.40
$\mathrm{Pd}(\mathrm{OAc})_{2}$	2.25	2.25
PPh_{3}	5.25	5.25
$\mathrm{K}_{2} \mathrm{CO}_{3}$	55.28	55.28
DMAc	8.71	0
HCl	14.58	0
Total	143.69	73.73
$\begin{gathered} \text { Total } \text { waste }=73.73 \mathrm{~g} ; \text { Compound obtained }=26,87 \mathrm{~g} \\ \text { E-factor }=2.74 \end{gathered}$		

	Amount (g)	Waste (g)
Compound 3a	18.92	9.27
9-(bromomethyl)nonadecane	36.14	17.71
$\mathrm{~K}_{2} \mathrm{CO}_{3}$	27.64	27.64
$\mathrm{DMAc}^{\text {SMA }}$	8.71	0
Silica gel	80.00	80
Hexane	131.00	131
Ethyl acetate	18.04	18.04
iPrOH	157.20	157.20
Total	$\mathbf{4 7 7 . 6 5}$	$\mathbf{4 4 0 . 8 5}$

Total waste $=440.85 \mathrm{~g} ;$ Compound obtained $=24,42 \mathrm{~g}$
\boldsymbol{E}-factor $=\mathbf{1 8 . 1}$

Table S3. Bromination experiments on esters 3

Entry	Starting ADT	Reaction condition	Yield
1	3b	NBS, CHCl_{3}, rt	0
2	3b	NBS, DMF, $100^{\circ} \mathrm{C}$	0
3	3b	NBS, $\mathrm{CHCl}_{3}: \mathrm{AcOH} 8: 2, \mathrm{rt}$	0
4	3b	$\mathrm{Br}_{2}, \mathrm{CHCl}_{3}$, rt	0
5	3b	$\mathrm{Br}_{2}, \mathrm{DMF}$, rt	0
6	3c	NBS, $\mathrm{CHCl}_{3}: \mathrm{AcOH} 8: 2, \mathrm{rt}$	0
7	3d	NBS, DMF, $100^{\circ} \mathrm{C}$	0
8	3d	NBS, $\mathrm{CHCl}_{3}: \mathrm{AcOH} 8: 2, \mathrm{rt}$	25
9	3d	NBS, $\mathrm{CHCl}_{3}: \mathrm{AcOH} 1: 1, \mathrm{rt}$	0
10	3 a	$\mathrm{Br}_{2}, \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$, reflux	0

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}, 298 \mathrm{~K}\right)$ of the crude reaction mixture for the preparation of compound 3a, performed in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ as the catalyst (10%), DMAc , $130^{\circ} \mathrm{C}$, without the use of added phosphines. The crude reaction mixture was obtained removing the reaction solvent (DMAc) under reduced pressure.

Figure S2. Cyclic voltammogram of compound 3b.

Figure S3. Cyclic voltammogram of compound 9 .

Figure S4. Cyclic voltammogram of compound 10.

Figure S5. PL decay $\left(\lambda_{\text {ex }}=407 \mathrm{~nm}\right)$ in chloroform of compounds 9 (top, $\left.\lambda_{\text {em }} @ 560 \mathrm{~nm}\right)$ and 10 (bottom, $\left.\lambda_{\mathrm{em}} @ 590 \mathrm{~nm}\right)$. Bi-exponential fit (black lines) for $9\left(0.60 \mathrm{~ns}(0.43), 2.20 \mathrm{~ns}(0.57), X^{2}=\right.$ $1.402641)$ and $\mathbf{1 0}$ ($\left.1.16 \mathrm{~ns}(0.66), 1.79 \mathrm{~ns}(0.34), X^{2}=1.177968\right)$

Figure S6. PL decay $\left(\lambda_{\mathrm{ex}}=407 \mathrm{~nm}\right)$ in film cast of compounds 9 (top, $\left.\lambda_{\mathrm{em}} @ 766 \mathrm{~nm}\right)$ and $\mathbf{1 0}$ (bottom, $\lambda_{\mathrm{em}} @ 725 \mathrm{~nm}$). Bi-exponential fit (black lines) for 9 ($\left.3.28 \mathrm{~ns}(0.93), 8.60 \mathrm{~ns}(0.07), X^{2}=2.125197\right)$ and Three-exponential fit (black line) for $\mathbf{1 0}\left(0.95 \mathrm{~ns}(0.01), 3.94 \mathrm{~ns}(0.00), 0.002 \mathrm{~ns}(0.99), X^{2}=\right.$

Figure S7. Variation of the capacitance (left) and of the imaginary part of impedance (right) with frequency and for various values of the dc bias for a hole-only device made of small molecule 9 (600 nm thick films).

Figure S8. Current-density versus square voltage for a hole-only device made of small molecule 9 (600 nm thick film). The red line indicates the linear fit to the experimental data.

Figure S9. AFM image of a film (600 nm thick) of small molecule 9. Root-mean-square roughness of 120 nm .

Spectra of New Compounds

Compound 3a
${ }^{1} H$ NMR (300 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$

190	180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	10	0
	18	17	160	150	140	130	120	110			80	70	60	50	40	30	20	10	

Compound 3b
${ }^{l}{ }^{1} \mathrm{NMMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ESI-MS
pasini01 \#132 RT: 1.54 AV: 1 NL: $8.54 E 4$
T: IMMS $+c$ ESIsid $=30.00$ Fullms [150.00.2000.00]

Compound 3c
${ }^{1} \mathrm{H} N \mathrm{NR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\&

DEP-MS

pasini20 \#54 RT: 0.72 AV: 1 SB: 20 0.58-0.67, 0.89-1.03 NL: 4.70E7
$\mathrm{T}:+\mathrm{c}$ Full ms [50.00-1000.00]

Compound 3d
${ }^{1} H$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 4

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}$)

DEPT

DEP-MS

D:ILAVORICGS_2017\UNIPVIPasinilpasini18
4/19/2017 12:19:14 PM
LD12

pasini18 \#54 RT: 0.72 AV: 1 NL: 2.16E6
$\mathrm{T}:+\mathrm{c}$ Full ms [50.00-1000.00]

Compound 4
${ }^{1} \mathrm{H} N \mathrm{NR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

DEP-MS
pasini24_170607120158

pasini24_170607120158 \#53 RT: 0.71 AV: 1 SB: 68 0.11-0.57, 0.81-1.20 NL: 3.21E7

pasini24_170607120158 \#53 RT: 0.71 AV: 1 SB: $800.20-0.66,0.80-1.34$ NL: 3.21E7
T: + c Full ms [50.00-1000.00]

Compound 5
${ }^{1} \mathrm{H} N \mathrm{NR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 6
${ }^{1} \mathrm{H} N \mathrm{NR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Compound 9
${ }^{l}{ }^{1} \mathrm{NMR}$ (400 MHz, CDCl_{3})

${ }^{13} \mathrm{C} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

13C

DEPT135deg

DEPT135deg

HMQC

MALDI-TOF

Compound 10

${ }^{1} \mathrm{H} N \mathrm{NR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
13C

DEPT 135 deg

COSY

HSQC

HMBC

MALDI-TOF

REFERENCES

[1] Prusinowska, N.; Bardzinski, M.; Janiak, A.; Skowronek, P.; Kwit, M. Sterically Crowded TriangliminesSynthesis, Structure, Solid-State Self-Assembly, and Unexpected Chiroptical Properties. Chem. Asian J. 2018, 13, 2691-2699
[2] Nitti, A.; Bianchi, G.; Po, R.; Pasini, D. Scalable Synthesis of Naphthothiophene and Benzodithiophene Scaffolds as π-Conjugated Synthons for Organic Materials. Synthesis 2019, 51, 677-682
[3] Osw, P.; Nitti, A.; Etkind, S. I.; Abdullah, M. N.; Mwaura, J.; Galbiati, A.; Pasini, D. Synthesis and Evaluation of Scalable D-A-D π-Extended Oligomers as p-Type Organic Materials for Bulk-Heterojunction Solar Cells. Polymers 2020, 12, 720
[4] (a) Tanase, C.; Meijer, E. J.; Blom, P. W. M.; De Leeuw, D. M. Unification of the Hole Transport in Polymeric Field-Effect Transistors and Light-Emitting Diodes. Phys. Rev. Lett., 2003, 91, 216601; (b) Kassing, R. Calculation of the frequency dependence of the admittance of SCLC diodes. Phys. status solidi, 1975, 28, 107-117.
[5] Tripathi, D. C.; Tripathi, A. K.; Mohapatra, Y. N. Mobility determination using frequency dependence of imaginary part of impedance $(\operatorname{Im} Z)$ for organic and polymeric thin films. Appl. Phys. Lett., 2011, 98, 33304
[6]Martin, S. J.; Kambili, A.; Walker, A.B. Temperature and field dependence of the mobility of highly ordered conjugated polymer films. Phys. Rev. B. 2003, 67, 165214.
[7] Lampert, M.A.; Park, P. Current Injection is Solids; Academic Press, New York, 1970

