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Network architecture
The complete network architecture used for the transfer learning of the cubic perovskite 
formation energies in this study is listed below. The neural network was technically two 
networks: one consisting of layers 0-18 and used only to evaluate and process the input, and one 
consisting of layers 19-25 that was trained on the training data and tested on the test set. The 
neural network was created using the open source library Keras with Tensorflow v1.8.0 
backend.1
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Table S 1. Complete architecture of the neural network used in this study for the transfer learning of the cubic perovskite 
dataset. The network was split into 2 parts. The beginning was taken from the previous paper.2 It took the atomic Hirshfeld 
surfaces fingerprint plots as inputs and produced a flattened feature vector as output, without performing any optimization / 
training. The second part was took the feature vectors as input, and was optimized to produce DFT formation energy as output 
using a subset of the OQMD dataset as training data.

Layer # Layer Type Output Shapes Parameters Trained or From Previous
0 InputLayer (None, 50, 50, 1) 0 From Previous
1 Conv2D (None, 50, 50, 32) 320 From Previous
2 Conv2D (None, 50, 50, 32) 9248 From Previous
3 MaxPooling2D (None, 25, 25, 32) 0 From Previous
4 Dropout (None, 25, 25, 32) 0 From Previous
5 BatchNormalization (None, 25, 25, 32) 128 From Previous
6 Conv2D (None, 25, 25, 64) 18496 From Previous
7 Conv2D (None, 25, 25, 64) 36928 From Previous
8 Conv2D (None, 25, 25, 64) 36928 From Previous
9 MaxPooling2D (None, 12, 12, 64) 0 From Previous
10 Dropout (None, 12, 12, 64) 0 From Previous
11 BatchNormalization (None, 12, 12, 64) 256 From Previous
12 Conv2D (None, 12, 12, 128) 73856 From Previous
13 Conv2D (None, 12, 12, 128) 147584 From Previous
14 Conv2D (None, 12, 12, 128) 147584 From Previous
15 Conv2D (None, 12, 12, 128) 147584 From Previous
16 MaxPooling2D (None, 6, 6, 128) 0 From Previous
17 BatchNormalization (None, 6, 6, 128) 512 From Previous
18 Flatten (None, 4608) 0 From Previous
19 Dense (None, 128) 589952 Trained
20 Dropout (None, 128) 0 Trained
21 BatchNormalization (None, 128) 512 Trained
22 Dense (None, 128) 16512 Trained
23 Dropout (None, 128) 0 Trained
24 BatchNormalization (None, 128) 512 Trained
25 Dense (None, 1) 129 Trained



Compositions within cubic dataset
Not all cubic perovskite compounds in the OQMD database were included in this study. The 
figure below shows the compounds in the composition space that were not included as red x’s. 
The excluded compounds met one of the criteria listed in the main paper methodology section 
that caused the validity of the results to be uncertain: unconverged bandgap calculation, 
numerically identical unrelaxed and relaxed lattice parameters, or an unreasonably large lattice 
parameter after relaxation.

Figure S. 1. The compositions included in the cubic  perovskite dataset. X’s mark compositions not included in the current 
dataset. Many Cs compounds were excluded due to identical unrelaxed and relaxed lattice parameters, indicating a possible 
unnoticed failure of the relaxation calculation. Many Ni compounds failed to produce converged bandgap calculations, as well 
as some Fe and Pu compounds. 



Statistical plots of cubic dataset
Below are included plots showing the distribution of the formation energy in the cubic perovskite 
dataset with regards to the atom in the A and B sites (Figure S. 2 and Figure S. 3), the observed 
vs predicted values from the CNN using atomic Hirshfeld surfaces fingerprint plots (Figure S. 5 
and Figure S. 6), and the distribution of errors (residuals) from the predictions in regards to the 
atoms on the A and B sites (Figure S. 7 and Figure S. 8)

Figure S. 2. Box and whisker plot for the cubic perovskite dataset, showing distribution of DFT formation energies based on the 
atom in the A site. 



Figure S. 3. Box and whisker plot for the cubic perovskite dataset, showing distribution of DFT formation energies based on the 
atom in the B site. 



Schematic of the CGCNN3 method used as comparison technique

Figure S. 4. Schematic of the features and crystal graph architecture used in the CGCNN3 method that our results were compared 
against. The CGCNN method builds a graph network based on atoms and their neighbors within a certain distance. It uses 
elemental descriptors for the nodes of the graph network and a function of the bond distance for the connections between the 
nodes of the graph network.

Statistical plots of cubic dataset neural network results

Figure S. 5. Observed vs Predicted plot for the HFS+CNN prediction of cubic perovskite DFT-calculated formation energy, showing 
the size of the error for each datapoint. 



Figure S. 6. Observed vs Predicted plot for the HFS+CNN prediction of cubic perovskite DFT-calculated formation energy, showing 
the distributions of the dataset and the predictions on the sides of the axes. 



Figure S. 7. Box and whisker plot showing the distribution of the errors from the CNN built on atomic Hirshfeld surface 
fingerprint plots upon the cubic perovskite dataset based on the atom in the A site. Most systems have highly accurate 
predictions and large outliers are rare. A few atomic species contain small clusters of small-magnitude outliers. 



Figure S. 8. Box and whisker plot showing the distribution of the errors from the CNN built on atomic Hirshfeld surface 
fingerprint plots upon the cubic perovskite  dataset based on the atom in the B site. Most systems have highly accurate 
predictions and large outliers are rare. A few atomic species contain small clusters of small-magnitude outliers. 

Tables of outliers for cubic dataset
Below are tables showing the largest outliers for: the CNN based on atomic Hirshfeld surfaces 
fingerprint plots to predict DFT Formation Energy of the cubic perovskite dataset (Table S 2), 
the CNN from the prior work2 based on atomic Hirshfeld surfaces fingerprint plots to predict 
lattice parameter (Table S 3), that same CNN but with the systematic bias towards estimating 
towards the mean subtracted out by fitting a linear function to the bias (Table S 4), and the 
CGCNN prediction of DFT Formation Energy (Table S 5).



Table S 2. Outliers from the CNN prediction of OQMD formation energy of cubic perovskites based on the atomic Hirshfeld 
surface fingerprint plots that are over 0.5 eV/atom in magnitude. 8 of the 11 outliers contain either Ba, K, Rb, or Sr in the B site. 
All of these are group 1 or 2 elements and possess similar atomic size (~215-248 pm). 

Formula OQMD ID A atom B atom DFT Energy 
[eV/atom]

Test or 
Train

CNN 
Prediction

CNN 
Residual

BaIrO3 354509 Ir Ba 0.72301 Train 0.13193 -0.59108
BaRuO3 351592 Ru Ba 0.36980 Train -0.38285 -0.75265
KBO3 354529 B K 1.87903 Train 4.38580 2.50677
KIrO3 351163 Ir K 1.55826 Test 0.89468 -0.66358
KNpO3 353363 K Np -2.72349 Test -1.89679 0.82670
RbOsO3 354598 Os Rb 1.78189 Test 2.34054 0.55864
RbPaO3 350010 Pa Rb 0.14691 Test -1.52488 -1.67180
RbWO3 350721 W Rb 1.55350 Train 1.01992 -0.53358
SrAsO3 353710 As Sr -0.14189 Train -1.29662 -1.15473
YbUO3 352722 U Yb -2.34077 Test -2.86392 -0.52314
ZrBO3 353529 Zr B -1.92102 Train -1.33074 0.59028

The majority (8 of 11) of the large (0.5 eV/atom or greater) outliers from the CNN based on 
atomic Hirshfeld surfaces fingerprint plots came from compounds with Ba, K, Rb, or Sr in the B 
site. Although there is significantly more noise in this subset of data than then whole dataset 
(particularly for the less energetically favorable compounds), it can be seen in Figure S. 9 that 
the model still makes accurate predictions for many of the compounds containing these elements.



Figure S. 9. Residuals vs DFT calculated system energy for cubic perovskites with either Ba, K, Rb, or Sr in the B site. 

Table S 3. Major outliers (error greater than or equal to 0.13 Å in magnitude)  for the CNN predicting lattice parameter from our 
previous work.2 All are low lattice parameter structures with small elements on the B site. 

Formula OQMD 
ID

A atom B atom Unrelaxed 
Lattice 
Parameter

Relaxed 
Lattice 
Parameter

CNN  
Prediction

CNN 
Residual

BeNbO3 354613 Nb Be 4.4103 3.4055 3.5672 0.1617
BeOsO3 354294 Os Be 4.3401 3.4085 3.5419 0.1334
BeSnO3 352081 Sn Be 4.5602 3.5103 3.6471 0.1368
BiBO3 355209 Bi B 4.6836 3.5562 3.6887 0.1325
BSbO3 351589 Sb B 4.6042 3.4912 3.6487 0.1575
BTeO3 353061 Te B 4.6625 3.5146 3.6640 0.1494
BWO3 354532 W B 4.3660 3.4006 3.5996 0.1991
ErBeO3 354333 Er Be 4.6169 3.5176 3.6535 0.1359
EuSiO3 350094 Eu Si 5.0374 3.5930 3.7297 0.1367
HgBO3 354852 Hg B 4.5139 3.5175 3.6511 0.1337
LiMgO3 353554 Mg Li 4.7101 3.5470 3.6903 0.1433
NbBO3 354617 Nb B 4.4031 3.3997 3.5508 0.1511
ReBO3 350783 Re B 4.3458 3.3904 3.5278 0.1374
SiRhO3 355285 Rh Si 4.5384 3.5693 3.7039 0.1346



Table S 4. Major outliers (error greater than or equal to 0.08 Å in magnitude)  for the CNN predicting lattice parameter from our 
previous work2, after adjustment to correct for a systematic bias towards the norm of the dataset. The results were adjusted by 
fitting a linear function to the predicted values of the training set vs. the observed (relaxed) values, and applying that linear 
function to the output from the CNN. No strong trend is seen the composition of the compounds that are the greatest outliers.

Formula OQMD 
ID

A 
atom

B 
atom

Unrelaxed 
Lattice 
Parameter

Relaxed 
Lattice 
Parameter

CNN 
Prediction

Adjusted 
CNN 
Prediction

Adjusted 
CNN 
residual

AcUO3 353980 Ac U 4.9045 4.4655 4.5380 4.5501 0.0846
BaSmO3 354376 Ba Sm 5.3869 4.4759 4.5589 4.5727 0.0968
BeNbO3 354613 Nb Be 4.4103 3.4055 3.5672 3.5036 0.0981
BSbO3 351589 Sb B 4.6042 3.4912 3.6487 3.5914 0.1002
BTeO3 353061 Te B 4.6625 3.5146 3.6640 3.6080 0.0933
BWO3 354532 W B 4.3660 3.4006 3.5996 3.5385 0.1380
CaBeO3 350609 Be Ca 4.8057 4.1106 4.0540 4.0284 -0.0822
CaHfO3 351137 Ca Hf 5.0022 4.0735 4.0199 3.9916 -0.0819
CaMnO3 354167 Mn Ca 4.8652 4.2177 4.1304 4.1107 -0.1070
EuSiO3 350094 Eu Si 5.0374 3.5930 3.7297 3.6788 0.0857
GdLuO3 352794 Lu Gd 4.9635 4.3052 4.3944 4.3953 0.0901
GdPbO3 353224 Pb Gd 4.9744 4.3756 4.4540 4.4596 0.0840
InWO3 354278 W In 4.6666 4.0753 4.0219 3.9938 -0.0815
LiMgO3 353554 Mg Li 4.7101 3.5470 3.6903 3.6363 0.0893
NaSnO3 353611 Sn Na 5.0139 3.9767 4.0867 4.0636 0.0869
NbBO3 354617 Nb B 4.4031 3.3997 3.5508 3.4859 0.0862
PuUO3 351925 U Pu 4.6565 4.4414 4.5137 4.5240 0.0826
ScUO3 351981 U Sc 4.7254 4.0296 3.9636 3.9309 -0.0987
SiRhO3 355285 Rh Si 4.5384 3.5693 3.7039 3.6509 0.0817
SmHfO3 353183 Hf Sm 4.8651 4.3585 4.4394 4.4439 0.0853
SrInO3 352151 Sr In 5.2032 4.1602 4.0888 4.0659 -0.0943
SrNdO3 351064 Sr Nd 5.3011 4.4654 4.5449 4.5575 0.0922
YbHoO3 350358 Yb Ho 5.0926 4.2320 4.3228 4.3181 0.0861



Table S 5. Outliers of magnitude greater than 0.5eV/atom from the CGCNN3model’s prediction of formation energy trained on 
the OQMD dataset of cubic perovskites. Of the 24 such outliers, 8 contained either Li, Be, or B in the B site, and 21 contained a 
row 6 or row 7 element.

Formula OQMD ID A atom B atom Formation 
Energy 
[eV/atom]

Test or 
Train

CGCNN 
Prediction

CGCNN 
Residual

BeFeO3 353229 Fe Be 0.17434 Train -0.89083 -1.06517
BeWO3 354408 W Be -1.23241 Train -0.68311 0.54931
CsAuO3 350310 Au Cs 0.84211 Test 1.41975 0.57765
CsBeO3 353894 Cs Be -0.66301 Test -1.32627 -0.66326
CsBO3 352311 Cs B -0.20764 Train -0.76268 -0.55503
CsSiO3 351473 Cs Si -1.43517 Train -2.00721 -0.57204
GaCoO3 350919 Ga Co 0.18812 Train -0.55871 -0.74683
HfBeO3 353628 Hf Be -2.72597 Train -2.21696 0.50900
HfMgO3 355056 Hf Mg -2.32129 Test -1.79176 0.52953
KUO3 352272 K U -1.55408 Train -2.64256 -1.08849
LiHfO3 353246 Hf Li -1.96830 Train -1.39820 0.57010
LiTaO3 352711 Ta Li -1.39934 Train -0.82167 0.57768
LiWO3 352975 W Li -0.64769 Train -0.00977 0.63792
NaCrO3 351362 Na Cr -0.47855 Train -1.47801 -0.99946
NiPtO3 353435 Ni Pt -1.66989 Train -0.19497 1.47492
NiWO3 353281 Ni W -0.27606 Train -0.80590 -0.52984
PaTlO3 351202 Tl Pa -2.56301 Test -2.04409 0.51893
PuWO3 351872 W Pu -0.39435 Train -0.93596 -0.54161
ThMgO3 352136 Th Mg -3.30097 Train -2.71035 0.59062
ThUO3 351718 Th U -2.14584 Train -2.68709 -0.54125
TiIrO3 354340 Ti Ir 0.07521 Train -0.68195 -0.75716
UBiO3 350829 Bi U -1.71684 Test -2.25834 -0.54150
UTlO3 352223 Tl U -2.74528 Test -2.13136 0.61392
YbPaO3 352228 Pa Yb -0.95121 Train -1.98884 -1.03763



Reproducibility of cubic dataset results
The network used in the paper was taken from the best of 5 trained networks, as determined 
by test set r2 value. The r2 value for the other networks were 0.966, 0.980, 0.966, and 0.976. 
The training set r2 values were 0.981, 0.987, 0.983, and 0.997. The decision to take the best of 
the 5 trained networks was made to account for the tendency of neural networks to overfit to 
the training data and perform notably worse upon the test set. For comparison, the CGCNN 
code trains 3 networks internally with a validation set used to pick the best network.

Fifty different test/train splits than the one used in the main paper were also tested afterwards, 
using the same initial condition for all trainings. All layers were unfrozen for the retraining. The 
retrained networks displayed a tendency towards overfitting half of the time, with 25 of the 50 
networks overfit, either moderately or strongly. The average test set r2 of the 50 networks was 
0.964 and the average training set r2 was 0.994. The test set r2 distribution for the 50 models 
was roughly trimodal, split into well fit, overfit, and strongly overfit categories. For the 7 
networks that were strongly overfit, the average test set r2 was 0.918 and the average training 
set r2 was 0.994. For the 18 models that were moderately overfit, the average test set r2 was 
0.951 and the average training set r2 was 0.994. For the 25 models that were well fit, the 
average test set r2 was 0.986 and the average training set r2 was 0.995.



Figure S. 10. Histogram of the distribution of the test set r2 values for the 50 different test/train split retrainings of the network. 
The test set results are trimodal, with a cluster well fit around 0.986, another ranging ~0.94-0.96, and a third spread around 
~0.92. 

When retraining the networks with the feature extraction layers frozen, the average test set r2 
was 0.943 and the average training set r2 was 0.944, showing that using frozen feature 
extraction layers from a different split of the total dataset limits the accuracy of the network.

Histogram of perovskites within OQMD by structure prototype



The OQMD database contains more calculated compositions using the cubic perovskite 
prototype than it does of the other three perovskite prototypes they use. This creates an 
imbalanced dataset, with many compositions either having data for all four structure types or for 
only the cubic structure. To create a dataset more suitable for machine learning, the dataset was 
restricted to only compositions where non-cubic structures were also calculated within OQMD.

Figure S. 11. The distribution of formation energies amongst the perovskites in OQMD built from the cubic, rhombohedral, 
orthorhombic, and tetragonal perovskite prototype structures. Approximately half of the cubic perovskites in OQMD have the 
three non-cubic structures also calculated for their composition, with this split being primarily in favor of the lowest energy cubic 
perovskites.



Compositions included in the cubic and non-cubic dataset

Figure S. 12. The compositions included in the cubic perovskites and non-cubic variants study. X’s mark compositions not 
included in the current dataset. Many cubic compounds with higher formation energies were not included in the list of non-cubic 
perovskites to calculate by the OQMD4 project.



Tables of outliers for the cubic and non-cubic dataset
Table S 6. Outliers of magnitude greater than 0.5 eV/atom from the boosted CNN using atomic Hirshfeld surface fingerprint 
plots on the cubic and non-cubic perovskites dataset. 12 of the 23 outliers contain either K, Rb, or Ba, similar to the outliers from 
the cubic only dataset. All but two of the major outliers exist for either a cubic or a rhombohedral phase.

OQMD 
ID

Formation 
Energy 
[eV/atom]

Formula Structure Type Test 
or 
Train

Boosted 
CNN 
Prediction

Boosted 
CNN 
Residual

680527 -0.53978 NaOsO3 TetraPerovskite_PbTiO3 train 0.59397 1.13375
351071 0.30148 RbNaO3 CubicPerovskite_SrFeO3 train 0.89237 0.59089
827283 -0.19652 UVO3 RhombPerovskite_NdAlO3 train 0.58261 0.77913
352670 -0.13769 AcOsO3 CubicPerovskite_SrFeO3 test -0.92652 -0.78883
352220 0.01141 AgPdO3 CubicPerovskite_SrFeO3 test -0.49717 -0.50858
825448 -2.28222 BaEuO3 RhombPerovskite_NdAlO3 test -2.81651 -0.53428
353778 0.21877 BaMoO3 CubicPerovskite_SrFeO3 test -0.33410 -0.55287
352432 0.31813 BaTaO3 CubicPerovskite_SrFeO3 test -0.29747 -0.61560
354832 0.45994 BiOsO3 CubicPerovskite_SrFeO3 test -0.54963 -1.00957
354078 -1.90141 GdRhO3 CubicPerovskite_SrFeO3 test -1.27810 0.62331
353567 0.16618 K2O3 CubicPerovskite_SrFeO3 test 3.03919 2.87301
682719 -0.84201 K2O3 OrthoPerovskite_GdFeO3 test 0.13856 0.98057
826181 0.06963 K2O3 RhombPerovskite_NdAlO3 test 1.99372 1.92408
353595 0.15070 KRbO3 CubicPerovskite_SrFeO3 test 1.86324 1.71254
354728 0.13718 KRbO3 CubicPerovskite_SrFeO3 test 1.69408 1.55690
826197 0.11809 KRbO3 RhombPerovskite_NdAlO3 test 0.98956 0.87146
681206 0.17827 KRbO3 TetraPerovskite_PbTiO3 test 0.83954 0.66128
826809 0.08369 KRbO3 RhombPerovskite_NdAlO3 test 0.59725 0.51355
352055 -1.32336 LiNbO3 CubicPerovskite_SrFeO3 test -0.69393 0.62943
827216 -2.18036 PuTlO3 RhombPerovskite_NdAlO3 test -1.64255 0.53780
352939 0.46616 TaHgO3 CubicPerovskite_SrFeO3 test -0.35485 -0.82101
825737 -2.72396 TbCrO3 RhombPerovskite_NdAlO3 test -2.10865 0.61532
351910 -2.28914 ZrBiO3 CubicPerovskite_SrFeO3 test -1.53902 0.75011

Table S 7. Outliers of magnitude greater than 0.5 eV/atom from the CGCNN3 model  on the cubic and non-cubic perovskites 
dataset. Row 6 and 7 elements are in 29 of the 40 outliers. Half of the 40 outliers are for tetragonal structures, and only 2 were 
orthogonal structures. 

OQMD 
ID

Formation 
Energy 
[eV/atom]

Formula Structure Type Test 
or 
Train

CGCNN 
Prediction

CGCNN 
Residual

680866 -0.75628 AlInO3 TetraPerovskite_PbTiO3 train -1.47412 -0.71783
681887 -2.78652 BaLaO3 OrthoPerovskite_GdFeO3 train -2.28605 0.50047



826932 -2.99716 CaSiO3 RhombPerovskite_NdAlO3 train -2.36958 0.62758
680403 -1.74163 CaSiO3 TetraPerovskite_PbTiO3 train -2.37153 -0.62990
680287 0.10016 CdMoO3 TetraPerovskite_PbTiO3 train -0.89109 -0.99125
350688 -2.52116 ErNpO3 CubicPerovskite_SrFeO3 train -3.05845 -0.53730
825501 -2.79764 GdBeO3 RhombPerovskite_NdAlO3 train -2.20389 0.59375
352272 -1.55408 KUO3 CubicPerovskite_SrFeO3 train -3.23986 -1.68578
826277 -0.15661 NaLiO3 RhombPerovskite_NdAlO3 train -0.67279 -0.51618
680803 -1.75433 NbCrO3 TetraPerovskite_PbTiO3 train -2.42981 -0.67548
353435 -1.66989 NiPtO3 CubicPerovskite_SrFeO3 train -0.03333 1.63655
352361 -0.83158 PaTeO3 CubicPerovskite_SrFeO3 train -1.34851 -0.51693
681342 -1.17059 PuCrO3 TetraPerovskite_PbTiO3 train -2.72533 -1.55474
681194 -1.95281 PuNiO3 TetraPerovskite_PbTiO3 train -2.62112 -0.66831
351872 -0.39435 PuWO3 CubicPerovskite_SrFeO3 train -1.17295 -0.77860
826854 -1.73944 RbReO3 RhombPerovskite_NdAlO3 train -1.21089 0.52854
680792 -1.19144 SrReO3 TetraPerovskite_PbTiO3 train -1.71811 -0.52667
680149 -1.75642 UCdO3 TetraPerovskite_PbTiO3 train -2.31174 -0.55532
352228 -0.95121 YbPaO3 CubicPerovskite_SrFeO3 train -1.78830 -0.83709
679797 0.21709 AgMoO3 TetraPerovskite_PbTiO3 test -0.70000 -0.91709
681168 -1.40193 AlAgO3 TetraPerovskite_PbTiO3 test -2.33149 -0.92956
680426 -0.72753 AlBiO3 TetraPerovskite_PbTiO3 test -1.65915 -0.93162
680292 -0.73329 BaReO3 TetraPerovskite_PbTiO3 test -1.41438 -0.68109
680890 -1.13465 CaBeO3 TetraPerovskite_PbTiO3 test -2.04233 -0.90768
680989 0.13304 CsGeO3 TetraPerovskite_PbTiO3 test -0.46104 -0.59408
826933 -3.08026 EuSiO3 RhombPerovskite_NdAlO3 test -2.27173 0.80854
352466 -2.54720 HoNpO3 CubicPerovskite_SrFeO3 test -3.07189 -0.52469
826809 0.08369 KRbO3 RhombPerovskite_NdAlO3 test -0.47780 -0.56149
350253 -2.28401 LiUO3 CubicPerovskite_SrFeO3 test -2.84502 -0.56100
680108 -1.18248 LiUO3 TetraPerovskite_PbTiO3 test -3.81640 -2.63392
680732 -0.96928 NdNiO3 TetraPerovskite_PbTiO3 test -1.72204 -0.75276
350865 -1.29518 PuPbO3 CubicPerovskite_SrFeO3 test -2.09440 -0.79922
352717 -0.98233 PuTcO3 CubicPerovskite_SrFeO3 test -1.49274 -0.51042
680048 -0.56025 RbMoO3 TetraPerovskite_PbTiO3 test -1.09075 -0.53050
680736 -0.52846 RbWO3 TetraPerovskite_PbTiO3 test -1.11886 -0.59040
680363 -0.70944 TiHgO3 TetraPerovskite_PbTiO3 test -1.45476 -0.74532
825404 -2.90772 UAlO3 RhombPerovskite_NdAlO3 test -3.52657 -0.61885
682925 -2.93972 UAlO3 OrthoPerovskite_GdFeO3 test -3.49668 -0.55696
681228 -1.47288 YbBeO3 TetraPerovskite_PbTiO3 test -1.97868 -0.50580
826935 -3.09632 YbSiO3 RhombPerovskite_NdAlO3 test -2.13958 0.95673



Confusion plots for the cubic and non-cubic dataset neural network results

Figure S. 13. Confusion plot for the relative ordering of same composition phases in the full cubic and non-cubic perovskite 
dataset as produced by our model built using a CNN and Hirshfeld surface fingerprint plots.



Figure S. 14. Confusion plot for the relative ordering of same composition phases in the full cubic and non-cubic perovskite 
dataset as produced by the CGCNN3 model.



Neural Network qualitative visualization
The following figure (Figure S. 15) is included to qualitatively highlight the nonlinearity of the 
relationship between the features in the input to the neural network (the atomic Hirshfeld 
surfaces fingerprint plot) and the formation energy of the crystal structure. Each plot shows a 
visualization of the latent space for the entire dataset at different points through the neural 
network. The latent space refers to the output of the intermediate layers in a deep neural network 
that contains the geometric features as captured by the network through progressive layers of 
abstraction. Here we have performed a t-SNE5 on the output of the intermediate convolution and 
fully connected layers to generate a compressed visualization of the geometric features hidden in 
the fingerprint plots in Figure S. 15. The output of the convolution layers are usually complex 
sets of multidimensional matrices that are flattened to give a vector before feeding it as an input 
to the t-SNE framework. The outputs of the dense layers are fed as is. The t-SNE is a manifold 
learning algorithm that computes the structural similarities of data in high-dimension and 
produces a lower order representation while preserving the topology of the original data. The 
latent space visualization gives a global and at times hierarchical structure of the overall dataset 
as it moves along the forward direction of a deep network. Although the absolute coordinates do 
not bear any significance, the proximity between the compounds in 2D is a representation of how 
they would have been in the high-dimensional space. For example, the t-SNE reduces each 
50x50 input fingerprint plot to a 2D representation in Figure S. 15 (upper left) by approximately 
mimicking the similarities between the fingerprint plots for all the compounds. Thus, the 
compounds with similar looking fingerprint plots sit closer to each other , yet they show only 
minimal correlation with the formation energy. As the dataset is processed by the neural 
network, the proximities of the network’s internal representations of the compounds change 
significantly and the global structure evolves into a clear trend in formation energy with respect 
to the latent space. This plot visualizes the level of nonlinear complexity that the network learns 
from the beginning till the end. Figure S. 15 (lower right) displays a smooth gradation of 
compound coloring in terms of the formation energy, showing that the network is able to find out 
combinations of geometric motifs inside the fingerprint plots that are in near perfect correlation 
with the output.



Figure S. 15. Latent Space Visualization using t-SNE for the (upper left) input layer, (upper middle) first convolution layer, (upper 
right) 5th convolution layer, (lower left), 9th convolution layer, (lower middle) first dense layer, and (lower right) final dense layer. 
The t-SNE methodology shows the higher-dimensional similarity relationships between the input (upper left) or mid-network 
layer output (the rest) for all the compounds in the dataset flattened into two dimensions. The relationship is shown to be highly 
nonlinear with regards to the input, but the final network layer’s latent space is easily correlated to the formation energy.



Statistical plots for the cubic and non-cubic dataset based on structure analysis

Figure S. 16. Ranges of DFT predicted formation energies vs. the atom placed in the A position of the initial structure for the 
cubic and non-cubic perovskites dataset from OQMD. The energies are categorized by their lattice symmetry if their final 
structure has perovskite-like coordination (8,10, or 12 for A site and 6 for B site), or “other” if the structure has different 
coordination. This plot contains elements in the A-E range. 



Figure S. 17. Ranges of DFT predicted formation energies vs. the atom placed in the A position of the initial structure for the 
cubic and non-cubic perovskites dataset from OQMD. The energies are categorized by their lattice symmetry if their final 
structure has perovskite-like coordination (8,10, or 12 for A site and 6 for B site), or “other” if the structure has different 
coordination. This plot contains elements in the A-H range. This plot contains elements in the F-M range.



Figure S. 18. Ranges of DFT predicted formation energies vs. the atom placed in the A position of the initial structure for the 
cubic and non-cubic perovskites dataset from OQMD. The energies are categorized by their lattice symmetry if their final 
structure has perovskite-like coordination (8,10, or 12 for A site and 6 for B site), or “other” if the structure has different 
coordination. This plot contains elements in the N-R range. 



Figure S. 19. Ranges of DFT predicted formation energies vs. the atom placed in the A position of the initial structure for the 
cubic and non-cubic perovskites dataset from OQMD. The energies are categorized by their lattice symmetry if their final 
structure has perovskite-like coordination (8,10, or 12 for A site and 6 for B site), or “other” if the structure has different 
coordination. This plot contains elements in the S-Z range.



Figure S. 20. Ranges of DFT predicted formation energies vs. the atom placed in the B position of the initial structure for the 
cubic and non-cubic perovskites dataset from OQMD. The energies are categorized by their lattice symmetry if their final 
structure has perovskite-like coordination (8,10, or 12 for A site and 6 for B site), or “other” if the structure has different 
coordination. This plot contains elements in the A-E range.



Figure S. 21. Ranges of DFT predicted formation energies vs. the atom placed in the B position of the initial structure for the 
cubic and non-cubic perovskites dataset from OQMD. The energies are categorized by their lattice symmetry if their final 
structure has perovskite-like coordination (8,10, or 12 for A site and 6 for B site), or “other” if the structure has different 
coordination. This plot contains elements in the F-M range.



Figure S. 22. Ranges of DFT predicted formation energies vs. the atom placed in the B position of the initial structure for the 
cubic and non-cubic perovskites dataset from OQMD. The energies are categorized by their lattice symmetry if their final 
structure has perovskite-like coordination (8,10, or 12 for A site and 6 for B site), or “other” if the structure has different 
coordination. This plot contains elements in the N-R range.



Figure S. 23. Ranges of DFT predicted formation energies vs. the atom placed in the B position of the initial structure for the 
cubic and non-cubic perovskites dataset from OQMD. The energies are categorized by their lattice symmetry if their final 
structure has perovskite-like coordination (8,10, or 12 for A site and 6 for B site), or “other” if the structure has different 
coordination. This plot contains elements in the S-Z range.



Reproducibility of the cubic and noncubic dataset results
To test the robustness of the results for the cubic and noncubic dataset, 20 different test/train 
splits were generated following the same rules of keeping all structural polymorphs of the same 
chemical composition in the same side of the split. Of the 20 new networks, 5 displayed 
significant overfitting, creating an average test set r2 of 0.959  0.053 (standard deviation) and 
an average training set r2 of 0.989  0.002. In the 15 networks that did not display overfitting, 
the average test set r2 was 0.987  0.003 and the average training set r2 was 0.989  0.002. 
These results are actually better than those reported in the main paper, indicating that our 
original network was somewhat overfit and even higher performance is fairly reliably able to be 
obtained from these networks.
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