SUPPLEMENTARY MATERIAL TO:

A low-temperature route for producing epitaxial perovskite superlattices on (001)-oriented SrTiO₃/Si substrates

Aleksandr V. Plokhikh,^{1*} Iryna S. Golovina,^{1*} Matthias Falmbigl,¹ Igor A. Karateev,² Alexander L. Vasiliev,³ Jason Lapano,⁴ Roman Engel-Herbert,^{4,5,6} and Jonathan E. Spanier^{1,7,8}

¹Department of Materials Science & Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA

²National Research Center "Kurchatov Institute", Kurchatov Square 1, Moscow 123182, Russia

³Moscow Institute of Physics and Technology (State University), MIPT, 9 Institutskiy per., Dolgoprudny, 141701 Moscow Region, Russia

⁴Department of Materials Science & Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA

⁵Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA

⁶Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA

⁷Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania 19104, USA

⁸Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA

* Authors with equal contribution.

An analysis of the $(BaTiO_3)_m/(SrTiO_3)_n$ superlattice structure peaks reveals a systematic change of the superlattice repeat unit thickness with a change in the deposition sequence. The slope for an increasing number of $BaTiO_3$ -layers from m/n = 1/5, 3/5 to 5/5 ($BaTiO_3/SrTiO_3$ cycles), and vice versa for the $SrTiO_3$ -layers reveals slopes of 4.08 nm and 3.89 nm, respectively, which are both close to the expected unit cell thicknesses of the individual constituents (see Fig. S1). This observation indicates a minor intermixing of Ba and Sr in the individual layers.

Figure S1. Superlattice structure repeat unit thickness as a function of increasing BaTiO₃ or SrTiO₃ cycles for a constant number of 5 repeat cycles for the other constituent.

Figure S2. The average *c*-lattice parameters of the superlattices obtained from XRD data as a function of increasing BaTiO₃/SrTiO₃-cycle ratio.

Figure S3. HAADF STEM images of **a**) (BaTiO₃)₁/(SrTiO₃)₅ and **b**) (BaTiO₃)₅/(SrTiO₃)₁ superlattices with a total number of 10 repeats.

Figure S4. SAED image taken on the (BaTiO₃)₃/(SrTiO₃)₅ (a) and (BaTiO₃)₅/(SrTiO₃)₃ (b) superlattices.

Figure S5. Indexed SAED image (1/4 part) taken on a (BaTiO₃)₅/(SrTiO₃)₃ superlattice.

Figure S6. RSM of an asymmetric scan around the (103) peak of the hMBE SrTiO₃-substrate layer. The dashed line indicates the epitaxial strain of the superlattice structure to the in-plane lattice dimensions of the SrTiO₃-substrate layer.