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1. State-of-the-art SERS detection of MeX 

Table S1. SERS detection of MeX reported in literature. 

Substrate MeX (Limit of detection) Ref. 

Ag NPs 

Ag NPs 

Ag NPs 

Ag NPs 

Ag NPs 

Ag NPs 

Au NP: CB7 
nanoaggregates 

Au NP: CB8 
nanoaggregates 

CAF (1 μM), TBR (1 μM), PRX (1 μM) 

CAF (1.4 μM), TBR (280 nM), TPH (1.4 μM) 

CAF (250 μM) 

CAF (5.7 mM) 

CAF (5.7 mM) 

CAF (1 mM) 

TBR (500 nM), TPH (50 nM), CAF (5 μM) 

 

TBR (50 nM), TPH (100 nM), CAF (1 μM) 

 

1 

19 

20 

21 

25 

26 

This study 

 

*PRX = paraxanthine (1,7-dimethylxanthine) 
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2. NMR and energy-minimised model of [CB7-TBR-H]+ 

 

Figure S1. (a) Energy-minimised molecular model of a [CB7-TBR-H]+ host-guest complex at 

CPCM/wB97X-D/6-31G* level of theory. CPCM implicit water model was used to approximate the 

solvent effects. (b) 1H NMR spectra of CB7, TBR and 1:1 CB7-TBR host-guest complex in D2O. Inset: 

Zoom-in NMR spectra. 
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3. NMR and energy-minimised model of [CB8-TBR-H]+ 

 

Figure S2. (a) Energy-minimised molecular model of a [CB8-TBR-H]+ host-guest complex at 

CPCM/wB97X-D/6-31G* level of theory. CPCM implicit water model was used to approximate the 

solvent effects. (b) 1H NMR spectra of CB8, TBR and 1:1 CB8-TBR host-guest complex in DCl. Inset: 

Zoom-in NMR spectra. 
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4. NMR and energy-minimised model of [CB7-TPH-H]+ 

 

Figure S3. (a) Energy-minimised molecular model of a [CB7-TPH-H]+ host-guest complex at 

CPCM/wB97X-D/6-31G* level of theory. CPCM implicit water model was used to approximate the 

solvent effects. (b) 1H NMR spectra of CB7, TPH and 1:1 CB7-TPH host-guest complex in D2O. Inset: 

Zoom-in NMR spectra. 
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5. NMR and energy-minimised model of [CB8-TPH-H]+ 

 

Figure S4. (a) Energy-minimised molecular model of a [CB8-TPH-H]+ host-guest complex at 

CPCM/wB97X-D/6-31G* level of theory. CPCM implicit water model was used to approximate the 

solvent effects. (b) 1H NMR spectra of CB8, TPH and 1:1 CB8-TPH host-guest complex in DCl. Inset: 

Zoom-in NMR spectra. 
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6. NMR and energy-minimised model of [CB7-CAF-H]+ 

 

Figure S5. (a) Energy-minimised molecular model of a [CB7-CAF-H]+ host-guest complex at 

CPCM/wB97X-D/6-31G* level of theory. CPCM implicit water model was used to approximate the 

solvent effects. (b) 1H NMR spectra of CB7, CAF and 1:1 CB7-CAF host-guest complex in D2O. Inset: 

Zoom-in NMR spectra. 
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7. NMR and energy-minimised model of [CB8-CAF-H]+ 

 

Figure S6. (a) Energy-minimised molecular model of a [CB8-CAF-H]+ host-guest complex at 

CPCM/wB97X-D/6-31G* level of theory. CPCM implicit water model was used to approximate the 

solvent effects. (b) 1H NMR spectra of CB8, CAF and 1:1 CB8-CAF host-guest complex in DCl. Inset: 

Zoom-in NMR spectra. 
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8. UV-Vis titration of [CB-TPH-H]+ 

 
Figure S7. UV-Vis titration of 4 μM TPH with (a) CB7 and (b) CB8. Insets: UV-Vis spectra of TPH upon 

stepwise addition of CB7 or CB8. The binding curves were fitted by assuming 1:1 binding model from 

which the binding constants were derived.  
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9. UV-Vis titration of [CB-CAF-H]+ 

 
Figure S8. UV-Vis titration of 4 μM CAF with (a) CB7 and (b) CB8. Insets: UV-Vis spectra of CAF upon 

stepwise addition of CB7 or CB8. The binding curves were fitted by assuming 1:1 binding model from 

which the binding constants were derived. 
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10. Binding parameters of the [CB-MeX-H]+ inclusion complexes 

Table S2. Packing coefficients of the [CB-MeX-H]+ inclusion complexes. 

Structure Inner cavity 

volume / Å3 

Molecular 

volume / Å3 

Packing 

coefficient 

Binding constant / 

M-1 

CB7 2421  
 

  

CB8 3671  
 

  

[TBR-H]+  168.86 
 

  

[TPH-H]+  168.23 
 

  

[CAF-H]+  188.11 
 

  

[CB7-TBR-H]+   
 

0.70 2.08 x 104 

[CB7-TPH-H]+   
 

0.70 
 

3.85 x 104 

[CB7-CAF-H]+   
 

0.78 
 

5.83 x 104 

[CB8-TBR-H]+   
 

0.46 
 

1.05 x 105 

[CB8-TPH-H]+   
 

0.46 
 

7.35 x 105 

[CB8-CAF-H]+  
 

 0.51 4.68 x 104 
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11. Binding energies of the [CB-MeX-H]+ inclusion complexes 

Table S3. Binding energies, in kcal mol−1, of the [CB-MeX-H]+ inclusion complexes in gas phase, 

optimised at the wB97X-D/6-31G* level of theory.  

Structure Energy / Hartree Energy / kcal mol−1 Binding energy / 

kcal mol−1 

CB7 -4211.1343 -2642524.6517 
 

 

CB8 -4812.7175 -3020023.5319 
 

 

[CAF-H]+ -680.5313 -427039.5438 
 

 

[TBR-H]+ -641.2288 -402376.8512 
 

 

[TPH-H]+ -641.2215 -402372.2503 
 

 

[CB7-CAF-H]+ -4891.8067 -3069652.7048 
 

-88.5093 
 

[CB7-TBR-H]+ -4852.5047 -3044990.3687 
 

-88.8658 
 

[CB7-TPH-H]+ -4852.4856 -3044978.3738 
 

-81.4718 
 

[CB8-CAF-H]+ -5493.3988 -3447157.1832 
 

-94.1075 
 

[CB8-TBR-H]+ -5454.0728 -3422479.7843 
 

-79.4012 
 

[CB8-TPH-H]+ -5454.0750 
 

-3422481.1624 -85.3801 
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Table S4. Binding energies, in kcal mol−1, of the [CB-MeX-H]+ inclusion complexes in water, optimised 

at the CPCM/wB97X-D/6-31G* level of theory.  

Structure Energy / Hartree Energy / kcal mol−1 Binding energy / 

kcal mol−1 

CB7 -4211.2727 
 

-2642611.4972 
 

 

CB8 -4812.8780 
 

-3020124.2609 
 

 

[TBR-H]+ -641.3206 
 

-402434.4394 
 

 

[TPH-H]+ -641.3159 
 

-402431.4858 
 

 

[CAF-H]+ -680.6192 
 

-427094.6582 
 

 

[CB7-TBR-H]+ -4852.6554 
 

-3045084.9433 
 

-39.0066 
 

[CB7-TPH-H]+ -4852.6576 
 

-3045086.2958 
 

-43.3128 
 

[CB7-CAF-H]+ -4891.9562 
 

-3069746.5395 
 

-40.3841 
 

[CB8-TBR-H]+ -5454.2537 
 

-3422593.2585 
 

-34.5581 
 

[CB8-TPH-H]+ -5454.2600 
 

-3422597.2184 
 

-41.4718 
 

[CB8-CAF-H]+ -5493.5596 
 

-3447258.0938 
 

-39.1747 
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12. Raman spectra of MeX, and SERS spectra of CBn 

 

Figure S9. (a-c) Raman spectra of (a) TBR, (b) TPH and (c) CAF powder respectively. (d) SERS spectra 

of 10 μM CB7 and 5 μM CB8. 
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13. SERS spectra of CB7-TBR complexes 

 

Figure S10. (a) Schematic illustration of the precise plasmonic hotspots within Au NP: CB7 

nanoaggregates for TBR detection (not to scale).  (b) SERS spectra of TBR in the presence or absence of 

CB7. (c) Full-range and (d) zoom-in SERS spectra of TBR with different concentrations from 0 to 10 μM. 

Main Raman peak of TBR at 1312 cm-1 is marked by x. Spectra were baseline corrected and offset for 

clarity. (e) Corresponding plot of SERS intensity of the main TBR peak (marked by x in (d)) against TBR 

concentration. (Note: x-axis is plotted in log-scale to even out the spread of the data points for better 

illustration. The linear region at low concentration had been identified and fitted linearly, while the full 

range fitted well by power law) 
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14. SERS spectra of CB7-TPH complexes 

 

Figure S11. (a) Schematic illustration of the precise plasmonic hotspots within Au NP: CB7 

nanoaggregates for TPH detection (not to scale).  (b) SERS spectra of TPH in the presence or absence of 

CB7. (c) Full-range and (d) zoom-in SERS spectra of TPH with different concentrations from 0 to 10 μM. 

Main Raman peak of TPH at 557 cm-1 is marked by *. Spectra were baseline corrected and offset for 

clarity. (e) Corresponding plot of SERS intensity of the main TPH peak (marked by * in (d)) against TPH 

concentration. (Note: x-axis is plotted in log-scale to even out the spread of the data points for better 

illustration. The linear region at low concentration had been identified and fitted linearly, while the full 

range fitted well by power law)  
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15. SERS spectra of CB7-CAF complexes 

 

Figure S12. (a) Schematic illustration of the precise plasmonic hotspots within Au NP: CB7 

nanoaggregates for CAF detection (not to scale).  (b) SERS spectra of CAF in the presence or absence 

of CB7. (c) Full-range and (d) zoom-in SERS spectra of CAF with different concentrations from 0 to 10 

μM. Main Raman peak of CAF at 1330 cm-1 is marked by +. Spectra were baseline corrected and 

offset for clarity. 
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16. SERS spectra of CB8-CAF complexes 

 

Figure S13. (a) Schematic illustration of the precise plasmonic hotspots within Au NP: CB8 

nanoaggregates for CAF detection (not to scale).  (b) SERS spectra of CAF in the presence or absence 

of CB8. (c) Full-range and (d) zoom-in SERS spectra of CAF with different concentrations from 0 to 5 

μM. Main Raman peak of CAF at 1330 cm-1 is marked by +. Spectra were baseline corrected and 

offset for clarity. (e) Corresponding plot of SERS intensity of the main CAF peak (marked by + in (d)) 

against CAF concentration. (Note: x-axis is plotted in log-scale to even out the spread of the data 

points for better illustration.)  
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17. Multiplexed quantification using machine learning techniques  

A. Partial Least Squares Regression 

 

Partial Least Squares Regression (PLSR)  is a well-established multivariate regression technique 

related to Principle Component Analysis (PCA).2,3 In PLSR, the dimensionality of the predictor (X) 

variables are reduced by finding new latent variables which best describe the variation in the 

response (Y) variables.3 To perform the analysis, the dataset is split into a m x n X matrix and a p x n 

Y matrix where n is the number of spectra, m is the number of wavenumber shifts in the SERS 

spectra after pre-processing, in this case, 1167 (from 500 - 1800 cm-1, equally spaced) and p is the 

number of analytes, which is 2.3,4 

 

The X and Y matrices are decomposed according to:2,3 

 

 𝐗 = 𝐓𝐏𝐭 + 𝐄 Equation 1 

 𝐘 = 𝐔𝐐𝐭 + 𝐅 Equation 2 

 

where 𝐓  and 𝐔  are the 𝐗  and 𝐘  scores and 𝐏  and 𝐐 are the 𝐗  and 𝐘  loadings. 𝐄  and 𝐅  are the 

residuals. The decomposition is performed in a way that maximises the covariance of 𝐓 and 𝐔. The 

scores are related by: 

 

 𝐔 = 𝐁𝐓 Equation 3 

 

where 𝐁 is a matrix of the PLSR coefficients.  

 

In this work, the Python class ‘sklearn.cross_decomposition.PLSRegression’, which utilizes the 

NIPALS algorithm2, was used to perform PLSR on the pre-processed spectra. The number of PLSR 

components used in the model was chosen to minimise the mean squared error.  

 

B. Artificial Neural Networks 

 

Artificial Neural Networks (ANNs) are computational systems inspired by the structure of biological 

brains.5 Their ability to recognise patterns and classify data has led to their widespread use in recent 

years.6 They are made up of many connected nodes called artificial neurons which take in multiple 

inputs and compute a single output value.5,7 ANNs are built by connecting these neurons into larger 

networks. Multilayer perceptrons (MLPs) are one of the simplest and most popular classes of feed-

forward ANNs.5 They consist of at least three layers of neurons – an input layer, one or more hidden 

layers and an output layer.5,8 Since multilayer perceptrons are fully connected, each neuron in one 

layer connects with every neuron in the following layer.9 Initially, the connections between neurons 

are assigned random weights.8 When the network is presented with a training dataset, back-

propagation is used to iteratively adjust the weights to reduce the difference between the output 

results and the actual results.5,8,9 This process is repeated until the error is below an acceptable level. 

The resulting trained network can then be used to determine the output for a new unseen input 

dataset. 
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In this work, the Python class ‘sklearn.neural_network.MLPRegressor’ was used to build an MLP and 

predict the concentration of analytes from unseen spectra. The parameters used in this work are 

detailed in Table S5. 

 

Table S5. Optimised parameters used for the multilayer perceptrons. 

 

Parameter Value 

Number of input nodes 1167 

Number of output nodes 2 

Number of nodes in the hidden layers (analyte 

concentrations ≤ 1 µM) 
16-128 

Number of nodes in the hidden layers (analyte 

concentrations ≤ 5 µM) 
32-32-128-16 

Activation function ReLU (Rectified Linear Function) 

Algorithm for weight optimisation Limited-memory BFGS 

Maximum number of iterations 200 

 

C. Pre-processing 

 

To prepare the dataset for machine learning, the spectra were truncated to eliminate the noisy 

regions close to the edge of the spectral detection band of the spectrometer.8 Measurements at 

Raman shifts below 500 cm-1 and above 1800 cm-1 were removed. After trimming the spectra, 

asymmetric least squares (ALS) baseline correction was applied.10 Then, standard normal variate 

normalisation was performed to give each spectrum a mean intensity of 0 and a standard deviation 

of 1.8,11 For the artificial neural network models, the analyte concentrations were also scaled via 

min-max normalization so that all of the values were transformed into the range [0,1]. 

 

D. Bootstrapping random resampling 

 

The models were evaluated using the bootstrapping random resampling procedure. In this method, 

the training set is created by randomly selecting n observations from the dataset with 

replacement.11 The fact that the selections are replaced after they are chosen means that the same 

observation can appear in the training set more than once. The number of selections, n, is equal to 

the number of observations in the original dataset. The test set is made up of any observations that 

were never selected and are therefore not in the training set. Once the two groups have been 

created, the model is built using the training set and evaluated using the test set. 1000 

bootstrapping iterations were performed to evaluate the models built in this work.  
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E. Relationship between SERS characteristic peak intensity and analyte concentration 

 

 
Figure S14. The intensities of the theobromine (blue) and theophylline (red) characteristic SERS 

peaks plotted against analyte concentration for the Au NP: CB8 dataset. A linear relationship 

between the analyte concentration and the peak intensity is present up to 1 µM. Above 1 µM, the 

relationship between peak intensity and concentration is no longer linear.  

 

F. PLSR Predictions (≤ 1 µM) 

 

 
Figure S15. Predictions of the theobromine (blue) and theophylline (red) concentrations made using 

the PLSR model trained with SERS spectra of solutions with analyte concentrations ≤ 1 µM from the 

Au NP: CB8 dataset. The points are the mean values calculated from 1000 bootstrapping iterations 

and the error bars show the standard deviation of the predictions.  
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G. ANN Predictions (≤ 1 µM) 

 

 
Figure S16. Predictions of the theobromine (blue) and theophylline (red) concentrations made using 

the ANN model trained with SERS spectra of solutions with analyte concentrations ≤ 1 µM from the 

Au NP: CB8 dataset. The points are the mean values calculated from 1000 bootstrapping iterations 

and the error bars show the standard deviation of the predictions. 

 

H. PLSR Predictions (≤ 5 µM) 

 

 
Figure S17. Predictions of the theobromine (blue) and theophylline (red) concentrations made using 

the PLSR model trained with SERS spectra of solutions with analyte concentrations ≤ 5 µM from the 

Au NP: CB8 dataset. The points are the mean values calculated from 1000 bootstrapping iterations 

and the error bars show the standard deviation of the predictions. 
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I. ANN Predictions (≤ 5 µM) 

 

 
Figure S18. Predictions of the theobromine (blue) and theophylline (red) concentrations made using 

the ANN model trained with SERS spectra of solutions with analyte concentrations ≤ 5 µM from the 

Au NP: CB8 dataset. The points are the mean values calculated from 1000 bootstrapping iterations 

and the error bars show the standard deviation of the predictions. 
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J. X-loadings for the components in a PLSR model  

 

 
Figure S19. The X-loadings for each component in a PLSR model built with 6 components. The model 
was trained with SERS spectra of solutions with analyte concentrations ≤ 1 µM from the Au NP: CB8 
dataset. The percentage of the variance explained (R2) by each component is stated in the title of the 
subplot. 
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K. Building models without the characteristic SERS peaks 

 

PLSR and ANN models were built using spectra in which the characteristic TBR and TPH peaks had 
been removed. All of the spectra were modified so the intensities at the wavenumbers surrounding 
the characteristics peaks, 642 cm-1 and 1312 cm-1 for theobromine and 573 cm-1 and 1298 cm-1 for 
theophylline, were changed to zero.  
 

 
Figure S20. Examples of the original (a and b) and modified (c and d) SERS spectra from the Au NP: 

CB8 dataset. Spectra a and c are from a solution containing 1 µM TBR and 0 µM TPH and spectra b 

and c are from a solution containing 1 µM TPH and 0 µM TBR. The intensities at the wavenumbers 

surrounding the characteristic peaks, 642 cm-1 and 1312 cm-1 for TBR and 573 cm-1 and 1298 cm-1 for 

TPH, were changed to zero. The edited areas are highlighted in green and purple for the TBR and 

TPH peaks respectively. 

 
Figure S21. Predictions of the theobromine (blue) and theophylline (red) concentrations made using 

the PLSR model trained with the modified SERS spectra of solutions with analyte concentrations ≤ 1 
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µM from the Au NP: CB8 dataset. The points are the mean values calculated from 1000 

bootstrapping iterations and the error bars show the standard deviation of the predictions. 

 

 
Figure S22. Predictions of the theobromine (blue) and theophylline (red) concentrations made using 

the ANN model trained with the modified SERS spectra of solutions with analyte concentrations ≤ 5 

µM from the Au NP: CB8 dataset. The points are the mean values calculated from 1000 

bootstrapping iterations and the error bars show the standard deviation of the predictions. 
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