Multistimuli and fingertip-triggered luminescence switching: Five colored ink-free rewritable secured platform with strongest red emission

Banchhanidhi Prusti¹, Pallavi Sarkar², Swapan Pati² and Manab Chakravarty^{1*}

¹Department of Chemistry, Birla Institute of Science and technology (BITS), Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad 500078, India

²Department of Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR),

Contents:

1.	¹ H, ³¹ C and ³¹ P NMR spectra for C5CBZP and C5DPAP	S2-S4
2.	¹ H, ³¹ C NMR spectra for CBZ4Py and DPA4Py	S5-S6
3.	Absorbance spectra for CBZ4Py and DPA4Py	S7
4.	Absorbance and PL spectra in different solvents for CBZ4Py and DPA4Py	S7
5.	Solid-state absorbance spectra for CBZ4Py, DPA4Py-B and DPA4Py-G	S8
6.	Crystallographic parameters table for CBZ4Py, DPA4Py-B and DPA4Py-G	S8-S9
7.	PL reversibility plot for CBZ4Py, DPA4Py-B and DPA4Py-G	S9
8.	Molecular crystal packing for DPA4Py-B and DPA4Py-G	S9
9.	Intermolecular interactions for CBZ4Py	S10
10.	HOMO-LUMO diagram for DPA4Py-B and DPA4Py-G	S10-
	S11	
11.	Optimized geometry of tetramer for DPA4Py-B and DPA4Py-G	
	S11	
12.	Hirshfeld calculations for DPA4Py-B and DPA4Py-G	S11-
	S12	
13.	Intermolecular interactions table for CBZ4Py, DPA4Py-B and DPA4Py-G	
	S13	
14.	Intermolecular interactions for CBZ4Py	S13

- 15. PL spectra under acid/base stimuli and reversibility plot for CBZ4Py------S14
 16. Different acids stimuli table for CBZ4Py------S14-
- S15
- 17. ¹H NMR titration spectra with TFA/TEA for CBZ4Py and DPA4Py-----S15-S16
- Lifetime decay table/plot for CBZ4Py, DPA4Py-B and DPA4Py-G----- S17

Fig S1: ¹H NMR spectrum for C5CBZP in CDCl₃.

Fig S2: ³¹P NMR spectrum for C5CBZP in CDCl₃.

Fig S3: ¹³C NMR spectrum for C5CBZP in CDCl₃.

Fig S4: ¹H NMR spectrum for C5DPAP in CDCl₃.

Fig S5: ³¹P NMR spectrum for C5DPAP in CDCl₃.

Fig S6: ¹³C NMR spectrum for C5DPAP in CDCl₃.

Fig S7: ¹H NMR spectrum for CBZ4Py in CDCl₃.

Fig S8: ¹³C NMR spectrum for CBZ4Py in CDCl₃.

Fig S9: ¹H NMR spectrum for DPA4Py in CDCl₃.

Fig S10: ¹³C NMR spectrum for DPA4Py in CDCl₃.

Fig S11: Absorbance spectra with different fractions of water in MeCN for (a) CBZ4Py and(b) DPA4Py. (10 μM).

Fig S12: (a) Absorbance spectra in different solvent for (a) **CBZ4Py**, (c) **DPA4Py** and PL spectra in different solvents for (b) **CBZ4Py**, (d) **DPA4Py**.

Fig S13: Absorbance spectra with different stimuli for (a) CBZ4Py and (b) DPA4Py-B, (c) DPA4Py-G.

Table-S1: Crystallographic parameters for CBZ4Py, DPA4Py-B and DPA4Py-G

Compounds	CBZ4Py	DPA4Py-B	DPA4Py-G
Emp. Formula	C38 H32 N2	C38 H34 N2	C38 H34 N2
Formula weight	516.65	518.71	518.71
Crystal system	monoclinic	orthorhombic	monoclinic
Space group	P 1 21/c 1	P c a 21	P 1 21/c 1
a /Å	13.6626(4)	9.9341(2)	18.7495(2)
b/Å	9.4221(2)	17.0176(4)	9.09830(10)
c /Å	21.1928(6)	17.0876(3)	18.4595(2)
/degree	90	90	90
/degree	92.901(3)	90	114.7790(10)
/degree	90	90	90
V/Å ³	2724.66(13)	2888.74(10)	2859.06(6)
Ζ	4	8	4
$D_{\text{calc}}/\text{g cm}^{-3}$]	1.260	1.193	1.205
/mm ⁻¹	0.555	0.524	0.529
F (000)	1096.0	1104.0	1104.0
Data/ restraints/	5759 /0/359	4269/1/362	6084/0/362
parameters			
S	1.059	1.053	1.031
R1 [I>2(I)]	0.0588	0.0520	0.0391
wR2 [all data]	0.1672	0.1434	0.1076
Max./min.	0.564/-0.333	0.0494/-0.2848	0.1936/-0.2230
residual electron			
dens. [eÅ ⁻³]			

Fig S14: Reversibility towards external stimuli for CBZ4Py, DPA4Py-B and DPA4Py-G

Fig S15: symmetry equivalence crystal packing for (a) DPA4Py-B, (b) DPA4Py-G along baxis.

Fig S16. All probable intermolecular interactions for CBZ4Py (showing no CH---N interaction)

Computational details:

Geometry optimizations of all the compounds are carried out with the aid of Density functional theory (DFT) using Gaussian 16¹ suite of programs. B3LYP-D3²⁻³ exchange-correlation functional along with 6-31G(d,p) basis set is used for all atoms. Further details are given in the supporting. Optimized geometries are further subjected to vibrational analysis to identify the structures as minima with all positive frequencies. Excited states calculations are performed using time-dependent density functional theory (TD-DFT) methods with long-range corrected CAM-B3LYP⁴ exchange correlational functional in combination with 6-31+g(d,p) basis set.Gradient density plot calculations are carried out using Multiwfn 3.6 package.⁵

Fig S17: (a) Frontier molecular orbitals for **DPA4Py-B** (left) and **DPA4Py-G** (right), (b) NTO orbitals for optically excited states for **DPA4Py-B** (left) and **DPA4Py-G** (right)

Fig S18: Optically excited states for DPA4Py-B and DPA4Py-G in dimeric form.

Fig S19: Optimized geometry in the tetrameric unit for (a) DPA4Py-B and (b) DPA4Py-G

Hirshfeld Calculation: Hirshfeld surface analysis and calculation of the void space are quantitative tools used to understand non-covalent interactions. We have generated Hirshfeld surfaces for **DPA4Py-B** and **DPA4Py-G** with an isovalue of 0.5 au. The surface is generated, and the interactions are shown in terms of de and di, in which de and di are the distances of an atom external or internal to the generated Hirshfeld surfaces, together this pair (de and di) generates a 2D fingerprint plot. The different colors on the fingerprint plot represent the

frequency of occurrence of the interaction. A red spot represents the direct interaction between two atoms. Ultimately it gives a normalized contact distance (dnorm). The dnorm values are mapped onto the Hirshfeld surface using a red, white, and blue color scheme; red, white, and blue regions correspond to the strong, medium, and weak interactions, respectively. All the Hirshfeld surfaces were generated using Crystal Explorer 3.1 software. The void spaces were calculated with the iso value of 0.002 a.u. within a radius of the unit cell +5 Å (default).

Fig S20 (a) Hirshfeld surface mapped 2D fingerprint plots for **DPA4Py-B** and **DPA4Py-G**, (b) Hirshfeld generated unit cell void space for **DPA4Py-B** and **DPA4Py-G**.

Table-S2: All intermolecular interactions in molecular crystal packing for CBZ4Py, DPA4Py-

B and DPA4Py-G

Interactions	CBZ4Py	DPA4Py-B	DPA4Py-G			

	2.85	2.88	2.81 (not CHπ)
	2.88	2.75	2.80
	2.74	2.88	2.79
СН	2.83	2.85	2.88 (not CH π)
	2.88	2.84	2.88
	2.79	2.82	
	2.87		
НН	2.30	2.36	2.38
	2.37		
СС		3.3	3.32
			3.39
NH		2.65	2.72
			2.68

These are the packing diagram with intermolecular interactions for CBZ4Py. Distances are in

Å.

Fig S21: (a) Protonation/deprotonation PL spectra (b) PL reversibility cycles upon acidification (c) Change in PXRD pattern after protonation for **CBZ4Py**

Table S3: PL behaviour of CBZ4Py towards different acids

Acids	λ _{emi} (nm)	$\Phi_f(\%, \text{absolute}) *$
Hydrochloric acid (HCl	626	51
Trifluoroacetic acid (TFA)	624	49.5
Trifluoromethanesulfonic acid (TfOH)	625	50.5
Sulfuric acid $(H_2SO_4)^{\#}$	626	58.5

* The absolute quantum yield was measured using a calibrated integrating sphere having an absolute error of $\pm 2\%$

[#]We have generated the fumes by heating (using hot air gun) concentrated H_2SO_4 taken in a small glass vial. The fume was taken through a silicone pipe and linked to the vial containing the probe. The acidification experiment was performed inside an effective fume hood.

Fig S21: ¹H NMR titration with TFA/TEA for CBZ4Py in CDCl₃ (for aromatic protons)

Fig S22: ¹H NMR titration with TFA/TEA for **CBZ4Py** in CDCl₃ (for aliphatic protons without any shifts)

Fig S23: ¹H NMR titration with TFA/TEA for DPA4Py in CDCl₃ (for aromatic protons)

Fig S24: ¹H NMR titration with TFA/TEA for DPA4Py in CDCl₃ (for aliphatic protons)

Table-S4: Lifetime parameters f	or CBZ4Py, DPA4Py-B and	l DPA4Py-G in their	solid-states

Probes	States	τ_1	τ ₂	τ ₃	A ₁	A ₂	A ₃	Avg.	χ^2
								LT(τ/ns)	
	Pristine	0.36	1.56	3.51	0.11	0.70	0.19	1.80	1.1
	Ground	0.31	1.45	3.08	0.46	0.46	0.08	1.06	1.06
CBZ4Py	Annealed	0.71	0.15	2.15	0.47	0.36	0.07	0.74	1.1
	Protonated	0.46	1.74	4.59	0.15	0.69	0.16	2.01	1.0
	Pristine	0.41	2.43	8.99	0.47	0.50	0.03	1.59	1.12
DPA4Py-	Ground	1.07	3.06	10.99	0.49	0.49	0.02	2.24	1.10
В	Annealed	0.44	3.06	11.42	0.37	0.60	0.03	2.31	1.20

	Protonated	3.50	4.19	6.37	0.46	0.46	0.08	4.05	1.11
	Pristine	0.38	2.86	9.10	0.43	0.53	0.04	2.02	1.17
DPA4Py-	Ground	1.04	3.01	10.46	0.47	0.51	0.02	2.23	1.11
G	Annealed	0.43	3.04	11.15	0.37	0.60	0.03	2.29	1.18
	Protonated	3.35	4.28	7.28	0.48	0.45	0.07	4.04	1.25

Fig S25: Lifetime plot for (a) CBZ4Py, (b) DPA4Py-B and (c) DPA4Py-G

References:

(1) Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria; M. A. Robb; J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Williams; F. Ding; F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

(2) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B*, 1988, 37, 785–789; (b) B. Miehlich, A. Savin,
H. Stoll, H. Preuss, *Chem. Phys. Lett.*, 1989, 157, 200–206.

(3) (a) S.Grimme, S. Ehrlich, L. Goerigk, J Comput Chem. 2011, 32, 1456–1465; (b) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104–154123; (c) S. Grimme, J. Comput. Chem., 2004, 25, 1463–1476; (d) S. Grimme, J. Comput. Chem., 2006, 27, 1787–1799.

(4) T. Yanai, D. P. Tew, N. C. Handey, Chem. Phys. Lett. 2004, 393, 51-57.

(5) T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580-592. ------END------