Approximate models for the lattice thermal conductivity of alloy thermoelectrics: Supporting information

Jonathan M. Skelton^{1*}

¹ Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK

* Corresponding author. E-mail: jonathan.skelton@manchester.ac.uk

Figure S1 Calculated thermal conductivity κ_{latt} of SnS (a) and SnSe (b) at T = 300 K as a function of the crystal grain size, modelled using a boundary-scattering model to limit the phonon mean free paths. Each plot shows the principal κ_{xx} , κ_{yy} and κ_{zz} components of the κ_{latt} tensor, corresponding to transport along the crystallographic a, b and c axes, together with the diagonal average $\kappa_{\text{ave}} = \frac{1}{3} \text{Tr}[\kappa_{\text{latt}}] = \frac{1}{3} (\kappa_{xx} + \kappa_{yy} + \kappa_{zz}).$

Figure S2 Dependence of the in-plane (κ_{\perp} , blue), out-of-plane (κ_{\parallel} , red) and average thermal conductivity ($\kappa_{\text{ave}} = \frac{1}{3} [2\kappa_{\perp} + \kappa_{\parallel}]$, black) of SnS (a) and SnSe (b) at T = 300 K, computed in 32-atom alloy supercells, on the averaged phonon-phonon interaction strength \tilde{P} . The values of \tilde{P} that reproduce the calculated κ_{\perp} , κ_{\parallel} and κ_{ave} are indicated by dashed lines.

Figure S3 Thermal conductivity of Sn(S_{0.1875}Se_{0.8125}) predicted using the model defined in **Eq. 8** in the text with the phonon-phonon interaction strengths replaced by a constant value $\tilde{P} = 1.469 \times 10^{-12} \text{ eV}^2$. (a)/(b) Two-phonon weighted join density-of-states functions $\overline{N}_2(\omega)$ defined in **Eq. 13** in the text. (c)/(d) Predicted in-plane (κ_{\perp} , blue), out-of-plane (κ_{\parallel} , red) and average thermal conductivity (κ_{ave} , black). Plots (a) and (c) show calculations on the Sn(S_{0.1875}Se_{0.8125}) alloy model, and the shaded areas indicate \pm one standard deviation. Plots (b) and (d) show calculations on SnSe for comparison. This plot is identical to **Fig. 9** in the text but includes the two alloy structures for which the κ_{latt} was deemed unphysically large.