Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Effects of Terminal Biphenyl Ring Geometry on the Photophysical Properties of *closo-o*-Carboranyl–Anthracene Dyads

Ju Hyun Hong,‡^a Sehee Im,‡^a Yung Ju Seo^a, Na Young Kim^a, Chan Hee Ryu^a, Mingi Kim^a, and Kang Mun Lee*^a

 ^a Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
 ‡ The first and second authors contributed equally to this work.

Contents

NMR Spectra for AC, oAC, mAC, pAC and their precursors
Crystallographic data and parameters for AC, oAC, mAC, and pAC ······S14
Selected bond lengths (Å) and angles (°) for AC, oAC, mAC, and pAC ······S15
UV-vis absorption and PL spectra for 9-phenylanthracene in THFS16
Full range (430–800 nm) PL spectra for AC, oAC, mAC, and pAC ······S17
PL spectra of oAC and mAC in various organic solvents ······S18
Stokes shifts as a function of the solvent-polarity for oAC and mAC ·······S18
Emission decay curves for AC, oAC, mAC, and pAC ······S19–S20
Raman spectra for AC, oAC, mAC, and pAC ······S21
Theoretical calculation details for AC, oAC, mAC, and pAC
Cartesian coordinates of AC, oAC, mAC, and pAC in each optimized geometry

8.79 8.77 8.77 7.845 7.722 7.722 7.725 7.757 7.63 7.757 7.63 7.757 7.63 7.757 7.63 7.757 7.777 7.757 7.777 7.757 7.757 7.777 7.777 7.757 7.777 7.757 7.777 7.757 7.777

Fig. S1 ¹H (top) and ¹³C (bottom) NMR spectra of AT (* from residual CH_2Cl_2 in CD_2Cl_2).

$\begin{array}{c} 8.67\\ 8.64\\ 8.64\\ 7.76\\ 8.64\\ 7.76\\ 7.66\\ 7.76\\ 7.55\\ 7.75\\ 7.55\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 7.73\\ 7.73\\ 8.6\\ 7.73\\ 8.6\\ 6.90\\ 6.83\\ 6$

Fig. S2 ¹H (top) and ¹³C (bottom) NMR spectra of *o*AT (* from residual CHCl₃ in CDCl₃).

Fig. S3 ¹H (top) and ¹³C (bottom) NMR spectra of *m*AT (* from residual CHCl₃ in CDCl₃).

Fig. S4 ¹H (top) and ¹³C (bottom) NMR spectra of pAT (* from residual CHCl₃ in CDCl₃).

Fig. S5 ${}^{1}H{}^{11}B{}$ (top) and ${}^{13}C$ (bottom) NMR spectra of AC (* from residual CH_2Cl_2 in CD_2Cl_2).

Fig. S6 ${}^{11}B{}^{1H}$ NMR spectra of AC.

Fig. S7 ${}^{1}H{}^{11}B{}$ (top) and ${}^{13}C$ (bottom) NMR spectra of *o*AC (* from residual CHCl₃ in CDCl₃).

Fig. S8 ${}^{11}B{}^{1}H{}$ NMR spectra of oAC.

Fig. S9 ¹H{¹¹B} (top) and ¹³C (bottom) NMR spectra of mAC (* from residual CH₂Cl₂ in CD₂Cl₂).

Fig. S10 ¹¹B $\{^{1}H\}$ NMR spectra of *m*AC.

Fig. S11 ¹H{¹¹B} (top) and ¹³C (bottom) NMR spectra of pAC (* from residual CH₂Cl₂ in CD₂Cl₂).

Fig. S12 ¹¹B{¹H} NMR spectra of pAC.

Compound	AC	<i>o</i> AC	mAC	pAC
Formula	C ₂₈ H ₂₈ B ₁₀	C ₃₄ H ₃₂ B ₁₀	$C_{34}H_{32}B_{10}$	C ₃₄ H ₃₂ B ₁₀
Formula weight	472.60	548.69	548.69	548.69
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	$P2_1/c$	C2/c	P_{-1}	C2/c
<i>a</i> (Å)	10.494(2)	26.9408(13)	8.6757(3)	20.593(4)
<i>b</i> (Å)	20.153(4)	10.2620(5)	11.6721(4)	18.751(4)
<i>c</i> (Å)	13.056(3)	25.1467(13)	15.5210(7)	18.322(4)
α (°)	90	90	73.4476(9)	90
eta (°)	108.95(3)	119.4985(15)	84.0392(16)	120.95(3)
γ (°)	90	90	86.0663(11)	90
$V(Å^3)$	2611.5(10)	6051.0(5)	1497.18(10)	6068(3)
Ζ	4	8	2	8
$\rho_{\rm calc}({\rm g~cm^{-3}})$	1.202	1.205	1.217	1.201
μ (mm ⁻¹)	0.062	0.063	0.064	0.063
<i>F</i> (000)	984	2288	572	2288
<i>T</i> (K)	293(2)	173(2)	173(2)	293(2)
Scan mode	φ and ω scans	φ and ω scans	φ and ω scans	φ and ω scans
	-13 < h < 13,	-34 < h < 34,	-11 < h < 11,	-26 < h < 26,
<i>hkl</i> range	-26 < k < 26,	-13 < k < 13,	-15 < k < 15,	-24 < k < 24,
	-16 < l < 16	-32 < 1 < 32	-20 < 1 < 20	-22 < l < 22
Measd reflns	25889	61641	37993	30155
Unique reflns $[R_{int}]$	5986 [0.0928]	6926 [0.0835]	7352 [0.0375]	6990 [0.0434]
Reflns used for	5986	6926	7352	6990
refinement	5700	0720	1552	0,,,0
Refined parameters	343	397	428	397
$R_1^a (\mathbf{I} > 2\sigma(\mathbf{I}))$	0.0671	0.0727	0.0509	0.0508
wR_2^b all data	0.1490	0.1697	0.1336	0.1844
GOF on F^2	1.008	1.048	1.047	1.002
$\rho_{\rm fin}$ (max/min) (e Å ⁻³)	0.186, -0.188	0.266, -0.272	0.306, -0.212	0.215, -0.199

Table S1 Crystallographic data and parameters for AC, oAC, mAC, and pAC.

 ${}^{a}\mathbf{R}_{1} = \sum ||F\mathbf{0}| - |F\mathbf{c}|| / \sum |F\mathbf{0}|. {}^{b}w\mathbf{R}_{2} = \{ \sum w(F\mathbf{0}^{2} - F\mathbf{c}^{2})^{2}] / [\sum w(F\mathbf{0}^{2})^{2}] \}^{1/2}.$

	AC	oAC	mAC	pAC
		bond lengths (Å)		
C10–C27	1.513(3)	1.513(2)	1.5162(15)	1.5241(18)
C27–C28	1.834(3)	1.820(3)	1.8182(18)	1.814(2)
C28–C29	C28–C29 1.510(3)		1.5025(19)	1.5026(19)
		angles (°)		
C13–C9–C15	120.61(19)	118.39(17)	119.50(10)	120.40(13)
C9-C15-C16	121.2(2)	125.6(2)	118.48(10)	121.15(13)
C10-C27-C28	115.23(14)	114.17(14)	113.78(9)	114.97(10)
C27–C28–C29	116.72(16)	117.99(15)	117.36(9)	117.18(11)

 Table S2 Selected bond lengths (Å) and angles (°) for AC, oAC, mAC, and pAC

Fig. S13 UV-vis absorption (left side) and PL spectra (right side) for 9-phenylanthracene ($\lambda_{ex} = 348$ nm). Black line: absorption spectra in THF (1.0×10^{-5} M), blue line: PL spectra in THF (1.0×10^{-5} M) at 298 K.

Fig. S14 Full range (430–800 nm) PL spectra of (a) AC ($\lambda_{ex} = 421$ nm), (b) *o*AC ($\lambda_{ex} = 422$ nm), (c) *m*AC ($\lambda_{ex} = 423$ nm), and (d) *p*AC ($\lambda_{ex} = 423$ nm) in various conditions.

Fig. S15 PL spectra of (a) oAC and (b) mAC in various organic solvents (1.0 × 10⁻⁵ M).

Fig. S16 Stokes shift as a function of the empirical solvent-polarity parameter $[E_T(30)]$ for *o*AC and *m*AC and their Mataga-Lippert plots ($R^2 = 0.98957$ for *o*AC and 0.99044 for *m*AC).

Fig. S17 Emission decay curves for (a) *o***AC**, and (b) *m***AC** in THF $(1.0 \times 10^{-5} \text{ M})$ at 298 K detected at each ICT based emission maxima at 298 K. Each red-line is its single exponential fitting curve for the decay curves.

Fig. S18 Emission decay curves for (a) **AC**, (b) **oAC**, (c) **mAC**, and (d) **pAC** in the film state (5 wt% doped in PMMA) detected at each CT based emission maxima at 298 K. Each red-line is its single exponential fitting curve for the decay curves.

Fig. S19 Raman spectra of **AC**, *o***AC**, *m***AC**, and *p***AC** (Laser: 785 nm (He-Ne laser), exposure time: 10 s, object: ×50 vis, power: 90 mW).

Fig. S20 The selected frontier orbitals of **AC** from TD-PBE0 calculations (Isovalue = 0.04 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

state	λ_{calc} (/nm)	f_{calc}	Major contribution
			S ₀
1	442.22	0.2553	HOMO \rightarrow LUMO (98.5%)
2	362.82	0.0175	HOMO \rightarrow LUMO+1 (97.7%)
3	355.49	0.0539	HOMO-1 \rightarrow LUMO (80.9%)
			HOMO \rightarrow LUMO+2 (14.6%)
4	341.66	0.0001	HOMO-2 \rightarrow LUMO (93.2%)
5	338.87	0.0064	HOMO-3 \rightarrow LUMO (89.9%)
			S ₁
1	628.91	0.3496	HOMO \rightarrow LUMO (99.9%)
2	419.61	0.0146	HOMO-2 \rightarrow LUMO (29.3%)
			HOMO-1 \rightarrow LUMO (66.2%)
3	408.17	0.0113	HOMO-4 \rightarrow LUMO (10.3%)
			HOMO \rightarrow LUMO+1 (87.5%)
4	406.68	0.0395	HOMO-2 \rightarrow LUMO (62.3%)
			HOMO-1 \rightarrow LUMO (30.2%)
5	394.69	0.0252	HOMO-3 \rightarrow LUMO (96.2%)

Table S3 Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for AC from TD-PBE0 calculations using the B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF

	E (eV)	carborane -phenyl	carborane	anthracene	anthracene 10-phenyl
		:	S_0		
LUMO+3	-0.43	80.5	7.8	6.6	5.2
LUMO+2	-0.79	8.1	4.3	78.0	9.6
LUMO+1	-1.66	24.5	35.8	39.5	0.2
LUMO	-2.67	5.1	31.4	62.3	1.2
НОМО	-5.61	0.6	7.0	91.2	1.1
HOMO-1	-6.79	2.1	0.2	85.1	12.6
HOMO-2	-6.95	0.7	0.7	25.1	73.5
НОМО-3	-6.96	0.1	1.6	33.7	64.7
		:	S ₁		
LUMO+3	-0.50	2.8	0.7	15.6	80.9
LUMO+2	-0.74	2.0	2.9	87.2	7.8
LUMO+1	-2.06	6.1	16.5	75.5	1.8
LUMO	-3.37	10.0	57.4	30.8	1.8
НОМО	-5.54	2.5	11.3	82.6	3.6
HOMO-1	-6.91	0.2	0.4	88.9	10.6
HOMO-2	-6.98	0.5	3.0	58.2	38.3
HOMO-3	-7.02	0.1	0.2	15.8	83.9

Table S4 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of AC at the ground state (S_0) and first singlet excited state (S_1) optimized geometries in THF

Fig. S21 The selected frontier orbitals of oAC from TD-PBE0 calculations (Isovalue = 0.04 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

state	λ_{cale} (/nm)	f_{calc}	Major contribution
			S_0
1	437.69	0.2828	HOMO \rightarrow LUMO (98.5%)
2	393.88	0.0040	HOMO-1 \rightarrow LUMO (98.2%)
3	365.22	0.0138	HOMO \rightarrow LUMO+1 (97.6%)
4	357.23	0.0517	HOMO-2 \rightarrow LUMO (80.4%)
			HOMO \rightarrow LUMO+2 (9.0%)
			HOMO \rightarrow LUMO+3 (6.0%)
5	343.48	0.0036	HOMO-4 \rightarrow LUMO (49.9%)
			HOMO-3 \rightarrow LUMO (41.1%)
			\mathbf{S}_1
1	620.18	0.3616	HOMO \rightarrow LUMO (100.3%)
2	484.49	0.0071	HOMO-1 \rightarrow LUMO (98.8%)
3	421.66	0.0161	HOMO-4 \rightarrow LUMO (20.6%)
			HOMO-2 \rightarrow LUMO (72.6%)
4	410.07	0.0313	HOMO-4 \rightarrow LUMO (33.1%)
			HOMO-3 \rightarrow LUMO (56.8%)
5	408.51	0.0150	HOMO-5 \rightarrow LUMO (10.3%)
			HOMO \rightarrow LUMO+1 (88.2%)

Table S5 Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for *o*AC from TD-PBE0 calculations using the B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF

0	(0)	0		0		
	E (eV)	carborane -phenyl	carborane	anthracene	anthracene 10-phenyl	terminal -phenyl
			S_0			
LUMO+3	-0.69	10.4	3.3	45.7	24.6	15.9
LUMO+2	-0.92	2.0	1.5	35.1	35.4	26.1
LUMO+1	-1.67	24.3	36.2	38.9	0.3	0.3
LUMO	-2.69	5.0	31.0	61.9	1.6	0.4
HOMO	-5.60	0.6	7.0	89.3	2.1	0.9
HOMO-1	-6.39	0.0	0.0	2.8	41.8	55.3
НОМО-2	-6.79	2.0	0.2	84.4	12.6	0.8
НОМО-3	-6.88	0.1	0.4	11.2	5.0	83.2
			\mathbf{S}_1			
LUMO+3	-0.69	2.1	2.2	67.5	21.8	6.5
LUMO+2	-0.93	0.2	0.5	20.4	44.7	34.1
LUMO+1	-2.06	6.0	16.2	76.0	1.4	0.5
LUMO	-3.38	10.1	57.9	30.3	1.4	0.3
HOMO	-5.55	2.5	11.1	82.8	2.7	1.0
HOMO-1	-6.40	0.0	0.0	3.6	40.2	56.2
HOMO-2	-6.89	0.2	0.5	70.9	4.4	24.0
НОМО-3	-6.90	0.2	0.2	23.7	13.6	62.3

Table S6 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of oAC at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF

Fig. S22 The selected frontier orbitals of *m*AC from TD-PBE0 calculations (Isovalue = 0.04 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

state	λ_{calc} (/nm)	f_{calc}	Major contribution
			S_0
1	439.04	0.2475	HOMO \rightarrow LUMO (98.4%)
2	392.77	0.0010	HOMO-1 \rightarrow LUMO (98.8%)
3	362.07	0.0213	HOMO \rightarrow LUMO+1 (97.8%)
4	354.62	0.0507	HOMO-2 \rightarrow LUMO (80.3%)
			HOMO \rightarrow LUMO+3 (10.3%)
5	338.52	0.0020	HOMO-4 \rightarrow LUMO (81.7%)
			HOMO-3 \rightarrow LUMO (12.7%)
			S ₁
1	619.90	0.3520	HOMO \rightarrow LUMO (99.9%)
2	487.76	0.0031	HOMO-1 \rightarrow LUMO (99.1%)
3	419.32	0.0166	HOMO-4 \rightarrow LUMO (14.0%)
			HOMO-2 \rightarrow LUMO (80.5%)
4	408.25	0.0125	HOMO-5 \rightarrow LUMO (11.5%)
			HOMO \rightarrow LUMO+1 (87.5%)
5	402.22	0.0434	HOMO-4 \rightarrow LUMO (73.0%)
			HOMO-2 \rightarrow LUMO (16.1%)

Table S7 Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for *m*AC from TD-PBE0 calculations using the B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF

0	(0)	0	(1) 1	0		
	E (eV)	carborane -phenyl	carborane	anthracene	anthracene 10-phenyl	terminal -phenyl
			\mathbf{S}_0			
LUMO+3	-0.72	12.2	4.6	64.6	9.2	9.3
LUMO+2	-1.03	0.9	0.6	15.2	46.9	36.3
LUMO+1	-1.64	26.2	36.7	36.9	0.2	0.1
LUMO	-2.65	4.7	29.6	64.4	1.2	0.1
НОМО	-5.61	0.6	6.9	91.4	1.1	0.1
HOMO-1	-6.29	0.0	0.0	1.6	46.0	52.3
HOMO-2	-6.80	2.6	0.3	87.4	9.4	0.2
HOMO-3	-6.95	1.0	0.3	4.7	7.3	86.7
			\mathbf{S}_1			
LUMO+3	-0.71	2.0	2.7	83.0	9.2	3.1
LUMO+2	-1.03	0.0	0.2	7.9	51.8	40.1
LUMO+1	-2.06	6.1	16.6	75.5	1.8	0.0
LUMO	-3.38	10.0	57.4	30.9	1.8	0.0
HOMO	-5.54	2.5	11.2	82.4	3.6	0.3
HOMO-1	-6.32	0.0	0.1	3.0	43.6	53.4
HOMO-2	-6.92	0.1	0.6	93.3	5.7	0.3
HOMO-3	-6.96	0.0	0.0	0.7	1.0	98.3

Table S8 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of mAC at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF

Fig. S23 The selected frontier orbitals of *p*AC from TD-PBE0 calculations (Isovalue = 0.04 a.u.) at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF.

state	λ_{calc} (/nm)	f_{calc}	Major contribution
			S ₀
1	441.17	0.2863	HOMO \rightarrow LUMO (98.4%)
2	399.37	0.0015	HOMO-1 \rightarrow LUMO (97.7%)
3	362.45	0.0213	HOMO \rightarrow LUMO+1 (97.7%)
4	353.88	0.0523	HOMO-2 \rightarrow LUMO (79.0%)
			HOMO \rightarrow LUMO+3 (16.0%)
5	337.69	0.0076	HOMO-4 \rightarrow LUMO (87.7%)
			S ₁
1	625.44	0.4292	HOMO \rightarrow LUMO (99.9%)
2	481.08	0.0509	HOMO-1 \rightarrow LUMO (98.7%)
3	418.36	0.0127	HOMO-4 \rightarrow LUMO (18.3%)
			HOMO-2 \rightarrow LUMO (74.5%)
4	412.34	0.0284	HOMO \rightarrow LUMO+1 (91.2%)
5	403.18	0.0461	HOMO-4 \rightarrow LUMO (65.6%)
			HOMO-2 \rightarrow LUMO (21.9%)

Table S9 Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for *pAC* from TD-PBE0 calculations using the B3LYP geometries at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF

	E (eV)	carborane -phenyl	carborane	anthracene	anthracene 10-phenyl	terminal -phenyl
		• •	S_0		• •	
LUMO+3	-0.80	7.9	4.1	75.9	11.6	0.4
LUMO+2	-0.99	0.0	0.1	2.5	53.5	43.9
LUMO+1	-1.65	25.1	36.3	38.4	0.2	0.0
LUMO	-2.67	5.0	30.7	63.2	1.2	0.0
HOMO	-5.61	0.6	6.9	91.2	1.2	0.1
HOMO-1	-6.26	0.0	0.0	2.8	46.3	50.9
HOMO-2	-6.81	2.5	0.3	91.9	4.9	0.4
HOMO-3	-6.94	0.0	0.1	1.5	2.0	96.4
			\mathbf{S}_1			
LUMO+3	-0.74	1.9	2.9	86.7	8.2	0.3
LUMO+2	-1.10	0.0	0.1	9.2	52.0	38.7
LUMO+1	-2.06	6.4	17.7	72.1	2.9	0.8
LUMO	-3.37	9.6	57.8	29.9	2.3	0.3
HOMO	-5.51	2.5	8.4	83.1	4.0	1.9
HOMO-1	-6.33	0.1	0.2	10.0	39.2	50.5
HOMO-2	-6.92	0.1	0.7	96.5	2.2	0.5
НОМО-3	-6.97	0.0	0.3	5.8	4.6	89.3

Table S10 Molecular orbital energies (in eV) and molecular orbital distributions (in %) of pAC at the ground state (S₀) and first singlet excited state (S₁) optimized geometries in THF

Ψ_2	0°		30°		60°		90°		120°		150°		180°	
	λ _{calc} (/nm)	f_{calc}	λ _{calc} (/nm)	$f_{ ext{calc}}$	λ _{calc} (/nm)	f_{calc}	λ _{calc} (/nm)	f_{calc}	λ _{calc} (/nm)	$f_{ m calc}$	λ _{calc} (/nm)	f_{calc}	λ _{calc} (/nm)	$f_{ m calc}$
AC	650.89	0.4427	644.30	0.4239	630.66	0.3756	628.91	0.3366	632.75	0.3689	651.44	0.4234	661.00	0.4426
oAC	667.83	0.4439	654.04	0.4061	649.58	0.3776	625.90	0.3239	649.65	0.3718	664.71	0.3950	669.82	0.4454
mAC	661.66	0.4720	642.41	0.4560	638.28	0.3994	629.48	0.3253	641.54	0.4005	646.44	0.4635	672.01	0.4705
pAC	664.51	0.5905	633.73	0.5428	633.18	0.4417	626.40	0.3681	661.08	0.4384	631.60	0.5491	664.73	0.5902

Table S11 Computed absorption wavelengths (λ_{calc} in nm) and oscillator strengths ($f_{calc.}$) for AC, oAC, mAC, and pAC in S₁ state upon the changes (0–180°) of Ψ_2 value

Atom	Х	Y	Ζ	Н	5.039648	-2.477141	-0.780425	C	-2	2.295981	-2.453603	-0.868295
С	0.242984	1.201730	3.603178	Н	2.930391	-1.518900	-2.695777	H	[]	1.415982	-2.541561	-1.932009
С	-0.232878	-0.005492	4.118408	В	4.112404	0.885715	1.033957	C	-().340462	-3.646939	-1.587870
С	1.180126	1.204651	2.572160	В	2.797439	1.354110	-0.083465	C	-]	1.700779	3.644925	-1.182173
С	0.243980	-1.211274	3.600732	В	4.497417	1.437414	-0.603789	H	[().124396	4.577881	-1.900513
С	1.659298	-0.002597	2.035084	В	4.112346	-0.888158	1.031664	H	[-3	3.346346	2.426423	-0.599703
С	1.181115	-1.211327	2.569705	В	5.320033	0.000013	0.066812	C	-]	1.700719	-3.641935	-1.191440
С	2.694625	-0.001121	0.955742	В	3.264657	0.888274	-1.755195	H	[-3	3.346299	-2.424944	-0.605866
С	2.079352	0.001252	-0.958258	В	2.797429	-1.353678	-0.087001	H	[().124454	-4.573021	-1.912210
Н	-0.112853	2.145408	4.004499	В	4.802189	0.002165	-1.617249	H	[-2	2.269573	4.569070	-1.163701
Н	-0.962770	-0.006611	4.922165	В	4.497465	-1.435688	-0.607486	H	[-2	2.269499	-4.566132	-1.175313
Н	4.278339	1.538948	2.006888	В	3.264760	-0.883636	-1.757534	C	-3	3.677880	0.000276	-0.234762
Н	1.544852	2.150121	2.190440	С	0.589495	0.001488	-1.166497	C		1.722662	0.001479	-1.171152
Н	-0.111076	-2.156054	4.000148	С	-0.157239	1.228679	-1.205183	C	-3	3.990663	-0.001454	1.132779
Н	2.143316	2.296857	0.157384	С	-0.157212	-1.225618	-1.208313	C	-(5.052873	0.000937	-0.747493
Н	5.039582	2.479297	-0.774178	С	0.398227	2.494286	-1.577283	H	[1.490264	0.002831	-2.232045
Н	1.546626	-2.155720	2.186067	С	-1.574978	1.218327	-0.906294	C	-5	5.321369	-0.001980	1.554188
Н	4.278385	-1.543895	2.002889	С	-1.574946	-1.216043	-0.909362	H	[-3	3.187555	-0.002362	1.863969
Н	6.463465	-0.000392	0.386545	С	0.398253	-2.490254	-1.583666	C	-(5.355314	-0.000784	0.615651
Н	2.930366	1.525979	-2.691808	С	-0.340509	3.650962	-1.578558	H	[-(5.851366	0.001869	-1.483489
Н	2.143441	-2.297083	0.151641	Н	1.415971	2.546492	-1.925450	H	[-:	5.549100	-0.003311	2.616016
Н	5.566122	0.003400	-2.526355	С	-2.296029	2.455767	-0.862067	H	[-7	7.390162	-0.001198	0.944462
				С	-2.246489	0.000844	-0.675270					

Table S12 Cartesian coordinates of the ground state (S₀) fully optimized geometry of AC in THF from TD-PBE0 calculations (in Å)

Atom	Х	Y	Ζ	Н	4.784805	1.202369	-2.590492	С	-2.525554	0.614853	-2.496127
С	1.257617	-3.926395	1.529128	Н	2.485897	2.846593	-1.803406	Н	1.154934	1.729599	-2.680428
С	0.916334	-4.639634	0.375874	В	4.292244	-0.465900	0.937472	С	-0.594145	1.263651	-3.771631
С	1.916848	-2.704901	1.431591	В	2.692782	0.396032	1.204163	С	-1.848874	1.231468	3.592997
С	1.248179	-4.118663	-0.878545	В	4.299870	1.253684	1.326894	Н	-0.076373	2.129462	4.452126
С	2.258097	-2.164722	0.173046	В	4.289212	-0.610715	-0.863217	Н	-3.449806	0.398057	2.455061
С	1.907251	-2.897469	-0.981178	В	5.262270	0.658117	-0.061063	С	-1.935014	0.859206	-3.723353
С	2.983799	-0.889802	0.068326	В	2.914427	2.170687	0.716612	Н	-3.571524	0.339099	-2.456833
С	1.853908	1.210264	-0.097868	В	2.688183	0.196352	-1.256823	Н	-0.123331	1.495328	-4.721231
Н	1.009267	-4.324370	2.508574	В	4.446809	2.203893	-0.184191	Н	-2.388277	1.167251	4.532237
Н	0.399183	-5.591111	0.453915	В	4.293097	1.023713	-1.522543	Н	-2.515318	0.759454	-4.634683
Н	4.703800	-1.267496	1.710004	В	2.909966	2.027493	-1.060507	С	-3.882525	0.070453	-0.003423
Н	2.178698	-2.163290	2.333550	С	0.346865	1.250473	-0.098487	С	-4.931928	0.894310	0.443280
Н	0.992753	-4.666995	-1.780483	С	-0.404842	1.311287	1.129323	С	-4.188055	-1.233795	-0.434473
Н	2.076864	0.113018	2.170348	С	-0.412665	1.118392	-1.316862	С	-6.245406	0.426349	0.459236
Н	4.796950	1.600157	2.350134	С	0.154869	1.766152	2.355928	Н	-4.715505	1.909649	0.760803
Н	2.162120	-2.506170	-1.959616	С	-1.791451	0.895471	1.161122	С	-5.500790	-1.702457	-0.406560
Н	4.697741	-1.526395	-1.498350	С	-1.809503	0.744149	-1.273588	Н	-3.387593	-1.882540	-0.776657
Н	6.449392	0.578188	-0.057007	С	0.139876	1.381642	-2.601048	С	-6.533669	-0.873885	0.038370
Н	2.493856	3.098872	1.320341	С	-0.547993	1.752305	3.550873	Н	-7.043947	1.079863	0.797126
Н	2.068115	-0.237572	-2.162411	Н	1.152212	2.171001	2.363824	Н	-5.716063	-2.715873	-0.731521
Н	5.054938	3.223050	-0.267912	С	-2.447773	0.805753	2.420492	Н	-7.556253	-1.238204	0.054952
				С	-2.477095	0.557585	-0.034102				

Table S13 Cartesian coordinates of the first-excited state (S1) fully optimized geometry of AC in THF from TD-PBE0 calculations (in Å)

Atom	Х	Y	Ζ	В	-3.524032	-0.292966	1.297115	C	1.443584	-0.977051	-3.286193
С	-2.096804	3.856766	0.349474	В	-5.004589	-1.265210	1.471819	Н	2.742524	0.325631	-2.219437
С	-1.724102	4.231820	-0.942692	В	-4.920421	-0.115897	-1.155024	Н	-0.001684	-2.408831	-4.048346
С	-2.697835	2.620109	0.576345	В	-5.867800	-1.186870	-0.090442	Н	1.378060	0.856366	4.747925
С	-1.966036	3.363584	-2.008949	В	-3.453892	-2.086837	1.211901	Н	2.034064	-0.955252	-4.196536
С	-2.936005	1.732830	-0.487131	В	-3.307404	-0.865073	-1.339789	C	2.797140	1.234321	0.105219
С	-2.565802	2.126337	-1.784880	В	-4.891265	-2.601412	0.296427	C	4.119141	0.732740	0.028914
С	-3.616259	0.421482	-0.254216	В	-4.774871	-1.872110	-1.326763	C	2.586407	2.622504	0.069119
С	-2.479211	-1.179918	0.185467	В	-3.312443	-2.461560	-0.514302	C	5.175637	1.653350	-0.091703
Н	-1.923866	4.527923	1.184875	C	-0.997164	-0.930371	0.253444	Н	3.648229	3.516895	-0.047812
Н	-1.256498	5.195761	-1.118376	C	-0.371406	-0.485425	1.467871	C	1.568066	2.996764	0.119634
Н	-5.551263	1.253253	0.989574	C	-0.175572	-1.000247	-0.923030	C	4.951755	3.027340	-0.130029
Н	-2.989024	2.349793	1.583619	C	-0.897412	-0.731912	2.776194	Н	6.191870	1.273889	-0.136948
Н	-1.689330	3.648185	-3.019201	C	0.898512	0.208458	1.410713	Н	3.456684	4.585144	-0.076355
Н	-3.045008	0.322745	2.172293	C	1.088378	-0.292542	-0.964901	Н	5.791580	3.710052	-0.216889
Н	-5.555853	-1.366118	2.517967	C	-0.502665	-1.775502	-2.081167	C	4.449413	-0.722698	0.051739
Н	-2.753479	1.468637	-2.624525	C	-0.282487	-0.278198	3.916105	C	3.978187	-1.578857	1.060367
Н	-5.305789	0.601132	-2.014176	Н	-1.775959	-1.344341	2.888564	C	5.293183	-1.258948	-0.936466
Н	-7.051060	-1.228842	-0.178708	C	1.479810	0.711873	2.620209	C	4.333680	-2.927933	1.074455
Н	-2.917572	-2.725841	2.048408	C	1.577848	0.363113	0.183552	Н	3.348933	-1.185324	1.850795
Н	-2.676883	-0.644801	-2.303405	C	1.834171	-0.262149	-2.187759	C	5.646337	-2.608227	-0.923789
Н	-5.360377	-3.674774	0.490960	Н	-1.361295	-2.425230	-2.059473	Н	5.661514	-0.613584	-1.728662
Н	-5.160511	-2.412771	-2.310374	C	0.277869	-1.778666	-3.209505	C	5.166155	-3.448991	0.082045
Н	-2.674336	-3.369880	-0.918609	C	0.908731	0.484664	3.842706	Н	3.963616	-3.570965	1.867671
В	-5.062558	0.259058	0.572822	Н	-0.709401	-0.522668	4.883996	Н	6.293080	-3.002326	-1.702266
				Н	2.413208	1.257132	2.551020	Н	5.439899	-4.499772	0.093864

Table S14 Cartesian coordinates of the ground state (S₀) fully optimized geometry of oAC in THF from TD-PBE0 calculations (in Å)

Atom	Х	Y	Ζ	В	-3.410656	-0.471028	1.209220	С	1.602818	-0.809280	-3.259375
С	-3.259420	3.978722	0.194252	B	-4.725455	-1.690696	1.554240	Н	2.832686	0.573215	-2.194116
С	-2.995887	4.389436	-1.116085	В	-4.965933	-0.634933	-1.110146	Н	0.209029	-2.270064	-4.039534
С	-3.542659	2.644518	0.469893	В	-5.643778	-1.841694	0.023552	Н	1.426525	1.062075	4.797865
С	-3.025024	3.449213	-2.150631	В	-3.080958	-2.294950	1.301512	Н	2.175722	-0.724786	-4.176868
С	-3.575351	1.682970	-0.562815	В	-3.169524	-1.010950	-1.184031	С	2.953650	1.370691	0.175554
С	-3.307739	2.113957	-1.879939	В	-4.429547	-3.041999	0.416104	C	4.272252	0.879479	-0.002322
С	-3.907139	0.278584	-0.279228	В	-4.446308	-2.315809	-1.221366	С	2.744890	2.759681	0.254316
С	-2.233975	-1.347754	0.255313	В	-2.906871	-2.684826	-0.429498	С	5.320762	1.808039	-0.120121
Н	-3.244857	4.701671	1.004527	С	-0.780532	-0.946872	0.311952	С	3.799587	3.661182	0.136439
Н	-2.772102	5.430369	-1.328755	С	-0.187978	-0.425667	1.519191	Н	1.732321	3.128736	0.386148
Н	-5.845187	0.593151	1.113878	С	0.049757	-0.959916	-0.864718	С	5.095493	3.181120	-0.056114
Н	-3.748747	2.339614	1.489711	С	-0.748219	-0.638876	2.809113	Н	6.333443	1.435642	-0.239947
Н	-2.826953	3.758328	-3.172689	С	1.048109	0.324359	1.464639	Н	3.608217	4.728362	0.190239
Н	-3.014478	0.253124	2.052696	С	1.270130	-0.182555	-0.909737	Н	5.929493	3.870516	-0.144889
Н	-5.225428	-1.852764	2.621004	С	-0.269898	-1.712946	-2.029922	C	4.600273	-0.574224	-0.057491
Н	-3.330359	1.395310	-2.691418	С	-0.181061	-0.128455	3.967174	С	4.152847	-1.469931	0.927833
Н	-5.530586	-0.111055	-2.013246	Н	-1.624895	-1.254207	2.911623	С	5.412832	-1.070591	-1.090874
Н	-6.799599	-2.119146	-0.030371	С	1.584379	0.859036	2.669706	С	4.500939	-2.820026	0.875447
Н	-2.497384	-2.836294	2.178580	С	1.747963	0.490654	0.241971	Н	3.549824	-1.106293	1.752441
Н	-2.589842	-0.697601	-2.163122	С	1.975100	-0.085175	-2.140820	С	5.758097	-2.421148	-1.144749
Н	-4.723154	-4.172802	0.641277	Н	-1.114189	-2.380209	-2.013842	Н	5.762316	-0.394380	-1.865679
Н	-4.742201	-2.936091	-2.191861	С	0.490915	-1.660258	-3.187733	C	5.301828	-3.301711	-0.161818
Н	-2.191021	-3.521954	-0.864947	С	0.984306	0.647378	3.898047	Н	4.150681	-3.494311	1.651376
В	-5.142473	-0.240189	0.644286	Н	-0.645187	-0.339070	4.924905	Н	6.379790	-2.785197	-1.957402
				Н	2.501295	1.432778	2.617297	Н	5.570072	-4.353094	-0.202352

Table S15 Cartesian coordinates of the first-excited state (S1) fully optimized geometry of **oAC** in THF from TD-PBE0 calculations (in Å)

Atom	Х	Y	Ζ	В	3.647104	0.627259	-1.298551	С	-0.224274	-2.094767	3.596441
С	-0.100773	3.085286	-1.224585	В	5.417294	0.789814	-1.340318	Н	-1.946479	-2.122218	2.344989
С	-0.794846	3.322895	-0.036445	В	4.391820	2.140311	0.974859	Н	1.718729	-2.123778	4.566793
С	1.162473	2.498498	-1.194722	В	5.893006	1.711347	0.114400	Н	-0.592719	-2.191565	-4.622535
С	-0.208633	2.980764	1.183679	В	4.699508	-0.746032	-0.817451	Н	-0.778878	-2.297941	4.506961
С	1.757409	2.137620	0.026628	В	3.591100	0.604844	1.415343	С	-2.342232	-1.821833	-0.085538
С	1.055642	2.395652	1.216508	В	6.051714	-0.044085	0.102712	С	-3.016246	-3.049415	-0.152421
С	3.126804	1.535191	0.056846	В	5.358356	0.765130	1.532317	С	-3.084792	-0.635641	-0.037191
С	3.280781	-0.456156	0.041543	В	4.662101	-0.760924	0.953393	С	-4.411503	-3.076301	-0.171880
Н	-0.540848	3.357331	-2.178841	С	1.975471	-1.204671	0.008261	Н	-2.449831	-3.974917	-0.188541
Н	-1.781419	3.775443	-0.060099	С	1.320001	-1.502796	-1.234634	С	-4.489032	-0.647627	-0.059682
Н	4.226395	3.124216	-1.446206	С	1.269854	-1.525996	1.217498	Н	-2.558156	0.310577	0.041105
Н	1.689141	2.327390	-2.125425	С	2.000731	-1.645283	-2.485515	С	-5.141892	-1.890206	-0.127756
Н	-0.733896	3.170370	2.114404	С	-0.111264	-1.726959	-1.257106	Н	-4.931415	-4.027779	-0.231005
Н	2.968813	0.610672	-2.254692	С	-0.160664	-1.752328	1.176271	Н	-6.225942	-1.925664	-0.170099
Н	6.005703	0.845949	-2.369423	С	1.898334	-1.691742	2.492545	С	-5.259031	0.623034	-0.012864
Н	1.497808	2.144576	2.172434	С	1.337031	-1.902613	-3.658858	С	-6.467903	0.708371	0.699278
Н	4.161708	3.098014	1.631117	Н	3.077007	-1.607707	-2.511450	С	-4.798219	1.771877	-0.679686
Н	6.830017	2.440070	0.139612	С	-0.773063	-1.931096	-2.511429	С	-7.190526	1.900308	0.743622
Н	4.754743	-1.736056	-1.459776	С	-0.846439	-1.754260	-0.054943	Н	-6.832283	-0.158657	1.241918
Н	2.878408	0.568329	2.345274	С	-0.872795	-1.989668	2.396645	С	-5.520734	2.963867	-0.634917
Н	7.102644	-0.596508	0.119885	Н	2.972359	-1.651380	2.564418	Н	-3.879685	1.724149	-1.256699
Н	5.903800	0.801764	2.585677	C	1.187320	-1.975812	3.631564	С	-6.720176	3.033638	0.077084
Н	4.691568	-1.761448	1.580928	С	-0.075456	-2.013322	-3.685200	Н	-8.118249	1.945132	1.306564
В	4.427845	2.154900	-0.797748	Н	1.906404	-2.033827	-4.574021	Н	-5.151147	3.836512	-1.165661
				Н	-1.848795	-2.056595	-2.508121	Н	-7.282875	3.961663	0.111494

Table S16 Cartesian coordinates of the ground state (S₀) fully optimized geometry of *m*AC in THF from TD-PBE0 calculations (in Å)

						-	-				
Atom	Х	Y	Ζ	В	3.503682	0.770468	-1.246131	С	0.045589	-2.922569	3.178895
С	0.719707	4.081083	0.212044	В	5.264606	0.652338	-1.711915	Н	-1.838362	-2.471568	2.284181
С	0.338287	4.133650	1.556223	В	4.972861	1.414446	1.045925	Н	2.087453	-3.304851	3.787461
С	1.744509	3.232756	-0.195813	В	6.175944	0.977712	-0.204400	Н	-1.467620	-0.796618	-4.667110
С	0.999516	3.330860	2.490767	В	4.355021	-0.854172	-1.521450	Н	-0.397761	-3.277277	4.103479
С	2.421434	2.415484	0.734776	В	3.794455	0.006556	1.082528	С	-2.571997	-1.765233	-0.014953
С	2.025051	2.481135	2.087762	В	5.930856	-0.679664	-0.716774	С	-3.217621	-2.995535	0.202036
С	3.526829	1.542509	0.311346	В	5.602095	-0.231195	0.985934	С	-3.348007	-0.597382	-0.091906
С	3.172759	-0.718003	-0.384190	В	4.565749	-1.405310	0.161303	С	-4.604248	-3.042728	0.335967
Н	0.216463	4.704381	-0.521197	С	1.777873	-1.288745	-0.396422	Н	-2.633663	-3.909340	0.245508
Н	-0.464091	4.793405	1.871999	С	0.914504	-1.152007	-1.543287	С	-4.743642	-0.629813	0.051140
Н	4.773452	3.096715	-1.040707	С	1.205320	-1.900792	0.775910	Н	-2.847721	0.355945	-0.229145
Н	2.032950	3.203806	-1.240535	С	1.407636	-0.887574	-2.851234	С	-5.361534	-1.874701	0.264262
Н	0.714560	3.367501	3.538052	С	-0.515842	-1.323840	-1.409623	Н	-5.098539	-3.997842	0.485009
Н	2.694491	1.160105	-2.011904	С	-0.230835	-2.027238	0.909091	Н	-6.442121	-1.929685	0.349240
Н	5.691266	0.918231	-2.789617	С	1.993393	-2.401265	1.849817	С	-5.544591	0.620060	-0.019720
Н	2.531861	1.866069	2.822791	С	0.577508	-0.766859	-3.955322	С	-6.666609	0.803902	0.806986
Н	5.152207	2.101078	1.997286	Н	2.468938	-0.819217	-3.014122	С	-5.201475	1.648509	-0.914521
Н	7.259635	1.468333	-0.179029	С	-1.337729	-1.174594	-2.561285	С	-7.419666	1.975542	0.740669
Н	4.173008	-1.568571	-2.448358	С	-1.093390	-1.687427	-0.164305	Н	-6.936647	0.034009	1.523405
Н	3.207211	-0.184799	2.088191	С	-0.764371	-2.475542	2.149803	С	-5.954412	2.820231	-0.980278
Н	6.840792	-1.367124	-1.055786	Н	3.065748	-2.414361	1.757535	Н	-4.353583	1.519702	-1.580417
Н	6.276000	-0.612514	1.888486	С	1.437061	-2.920072	3.009101	С	-7.066884	2.988934	-0.153089
Н	4.543236	-2.537289	0.509063	С	-0.810511	-0.893791	-3.809204	Н	-8.278177	2.099831	1.394096
В	4.760749	1.972933	-0.659049	Н	1.013134	-0.582536	-4.931682	Н	-5.676129	3.598597	-1.684661
				Н	-2.406496	-1.309682	-2.455489	Н	-7.653264	3.901346	-0.204550

Table S17 Cartesian coordinates of the first-excited state (S1) fully optimized geometry of mAC in THF from TD-PBE0 calculations (in Å)

			-		• • •	-	-				
Atom	Х	Y	Z	В	4.104160	0.865580	-1.039344	С	-0.263004	-3.230339	2.214920
 С	1.167873	3.609701	0.954279	В	5.851571	0.635032	-1.284460	Н	-1.958303	-2.215684	1.422097
С	0.615032	3.311009	2.201097	В	5.278459	0.661087	1.526947	Н	1.626654	-4.181402	2.706987
С	2.215073	2.842607	0.448414	В	6.588832	0.466202	0.334357	Н	-0.799831	1.319594	-4.622727
С	1.125439	2.244412	2.943408	В	4.752382	-0.733079	-1.542200	Н	-0.834020	-3.784131	2.953262
С	2.730124	1.759458	1.181387	В	4.095419	-0.641675	1.213502	С	-2.316633	-0.579556	-0.398923
С	2.173248	1.475969	2.440235	В	6.261886	-0.972228	-0.629671	С	-3.261991	-1.412050	-1.015290
С	3.880039	0.960704	0.654777	В	5.841793	-0.963104	1.103399	С	-2.777986	0.492399	0.378608
С	3.482723	-0.671184	-0.440140	В	4.745835	-1.718216	-0.069717	С	-4.626645	-1.178100	-0.858812
Н	0.786103	4.442711	0.372448	С	2.024371	-0.977065	-0.650367	Н	-2.926021	-2.243434	-1.627897
Н	-0.200773	3.909639	2.594580	С	1.290530	-0.393772	-1.739301	С	-4.142957	0.723333	0.534409
Н	5.343107	2.829395	0.057733	С	1.282636	-1.759661	0.299405	Н	-2.061607	1.143680	0.870744
Н	2.637478	3.093489	-0.516676	С	1.887460	0.048875	-2.962668	С	-5.095953	-0.106314	-0.080650
Н	0.710650	2.009035	3.918466	С	-0.151105	-0.275010	-1.654187	Н	-5.336019	-1.823878	-1.366976
Н	3.429973	1.529324	-1.731823	С	-0.159093	-1.632148	0.366920	Н	-4.472588	1.545737	1.161703
Н	6.413408	1.122073	-2.209442	С	1.871083	-2.724774	1.177535	С	-6.551388	0.141112	0.086866
Н	2.562592	0.658169	3.033642	С	1.157866	0.627596	-3.970752	С	-7.059292	1.450692	0.145176
Н	5.332023	1.115974	2.618296	Н	2.936502	-0.123537	-3.134883	С	-7.458042	-0.928184	0.191604
Н	7.689568	0.834166	0.584617	С	-0.867160	0.390212	-2.702017	С	-8.425201	1.682708	0.303258
Н	4.525323	-1.184522	-2.610051	С	-0.847572	-0.819498	-0.556417	Н	-6.382049	2.293085	0.041692
Н	3.416084	-1.028821	2.086962	С	-0.885397	-2.353655	1.369370	С	-8.824066	-0.696189	0.348666
Н	7.122283	-1.654076	-1.082149	Н	2.920620	-2.950647	1.092541	Н	-7.087198	-1.948564	0.174140
Н	6.396428	-1.635380	1.908934	С	1.132697	-3.438679	2.087875	С	-9.313960	0.610354	0.405452
Н	4.514615	-2.876690	-0.080943	С	-0.236384	0.837454	-3.830277	Н	-8.796111	2.702923	0.337991
В	5.283886	1.647365	0.052803	Н	1.657746	0.915887	-4.890510	Н	-9.505182	-1.537741	0.435135
				Н	-1.939136	0.503235	-2.597252	Н	-10.377616	0.791056	0.528101

Table S18 Cartesian coordinates of the ground state (S₀) fully optimized geometry of *p*AC in THF from TD-PBE0 calculations (in Å)

						-					
Atom	Х	Y	Ζ	В	4.049902	-0.038638	-1.219445	С	-0.444269	-1.503540	3.643165
С	1.999520	4.036788	-1.265172	В	5.761829	-0.646347	-1.388478	Н	-2.143796	-1.139404	2.408682
С	1.565414	4.617133	-0.069495	В	5.494339	1.049973	0.918094	Н	1.443891	-1.943443	4.604684
С	2.829044	2.919752	-1.244491	В	6.635679	-0.010803	0.039619	Н	-0.865770	-1.227034	-4.619380
С	1.976314	4.069631	1.149626	В	4.524191	-1.789291	-0.846184	Н	-1.031083	-1.563635	4.553866
С	3.251803	2.354279	-0.022554	В	4.029157	-0.002353	1.254219	С	-2.486281	-0.678389	-0.019949
С	2.805662	2.952503	1.175244	В	6.049995	-1.661862	0.057737	С	-3.424826	-1.546454	-0.611067
С	4.155162	1.192866	0.001785	В	5.736708	-0.606281	1.470089	С	-2.971084	0.496676	0.587666
С	3.339180	-1.049933	0.024954	В	4.508073	-1.764117	0.937510	С	-4.783077	-1.250669	-0.596103
Н	1.690695	4.457067	-2.217733	С	1.856442	-1.298592	0.015644	Н	-3.084431	-2.469139	-1.070157
Н	0.915780	5.486919	-0.087605	С	1.114719	-1.379782	-1.218303	С	-4.328026	0.796930	0.586617
Н	5.795454	1.927529	-1.602131	С	1.089910	-1.355055	1.236884	Н	-2.270619	1.183874	1.051774
Н	3.161250	2.481316	-2.178735	С	1.726712	-1.677308	-2.467764	С	-5.267081	-0.070142	-0.002662
Н	1.649702	4.515767	2.084348	С	-0.313089	-1.140941	-1.231211	Н	-5.477181	-1.937537	-1.069655
Н	3.395651	0.214228	-2.168459	С	-0.344644	-1.173880	1.211501	Н	-4.667060	1.707366	1.070394
Н	6.298187	-0.851225	-2.429887	С	1.679399	-1.633584	2.500957	С	-6.714982	0.247541	0.004829
Н	3.120006	2.539926	2.127268	С	1.028845	-1.665594	-3.664901	С	-7.163241	1.576840	-0.103704
Н	5.768761	1.972979	1.611940	Н	2.766820	-1.953950	-2.493241	С	-7.678252	-0.771521	0.120676
Н	7.799137	0.238195	0.045876	С	-0.970678	-1.031487	-2.488045	С	-8.524562	1.875474	-0.097645
Н	4.239546	-2.727258	-1.510974	С	-1.035624	-0.981895	-0.017747	Н	-6.441205	2.378889	-0.221395
Н	3.357897	0.276790	2.183875	С	-1.067795	-1.252853	2.433720	С	-9.039291	-0.471740	0.128332
Н	6.797163	-2.587640	0.077400	Н	2.733809	-1.839590	2.559971	Н	-7.358194	-1.802734	0.233101
Н	6.254396	-0.783327	2.525946	С	0.941365	-1.710181	3.671850	С	-9.468900	0.852859	0.018776
Н	4.210979	-2.682763	1.623404	С	-0.324130	-1.298127	-3.681849	Н	-8.848309	2.907710	-0.192169
В	5.508827	1.024872	-0.886785	Н	1.542576	-1.919567	-4.586071	Н	-9.765068	-1.273336	0.228182
				Н	-2.011099	-0.734271	-2.506468	Н	-10.529334	1.085894	0.024096

Table S19 Cartesian coordinates of the first-excited state (S₁) fully optimized geometry of *p*AC in THF from TD-PBE0 calculations (in Å)