A Silicon-Based Two-Dimensional Chalcogenide of p-type Semiconducting Silicon Telluride Nanosheets for Ultrahigh Sensitive Photodetector Applications

Chang-Yu Lin^{†,*,a}, Rajesh Kumar Ulaganathan^{†,*,b,c}, Raman Sankar^{*,d}, Raghavan Chinnambedu Murugesan^e, Ambika Subramanian^a, Alex Rozhin^e and Shaik Firdoz^f

^aDepartment of Mechanical Engineering, Chung Yuan Christian University, Taoyuan-32023,

Taiwan.

e-mail: cylin@cycu.edu.tw

^bCenter for Condensed Matter Sciences, National Taiwan University, Taipei-10617, Taiwan

^cDepartment of Photonics Engineering, Technical University of Denmark, Roskilde-4000,

Denmark.

e-mail: urajeshiitr@gmail.com

^dInstitute of Physics, Academia Sinica, Taipei-11529, Taiwan.

e-mail: sankarraman@gate.sinica.edu.tw

^eAston Institute of Photonic Technologies, Aston University, Birmingham- B4 7ET, UK

^fSchulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa-32000, Israel

† Authors contributed equally

Figure S1. EDS spectrum of the bulk Si_2Te_3 single crystal.

Figure S2. Elemental mapping of the as-synthesized exfoliated Si_2Te_3 nanosheets that reveals the presence of Si and Te and confirming the atomic weight percentage of Si and Te are ~ 40:59.3.

Figure S3. Photoluminescence spectrum of Si_2Te_3 from 500-900 nm wavelength region.

Figure S4. (a) Atomic force microscopic image of Si_2Te_3 nanosheets and (b) the thickness profile with Si_2Te_3 nanosheets thickness ~15 nm.

Figure S5. The measured I_{ds} -V_g curve of a few-layered Si₂Te₃-FET indicates the on/off current ratio of~10³.

Figure S6. I_{ph} vs V_g curve with sweep +40 to -40 V at $V_{ds} = 10V$

Figure S7. The measured responsivity of the Si_2Te_3 -FET device for different excitation wavelengths.

Materials	Measurement Conditions	R _λ (A/W)	D* (Jones)	Normalized Gain (cm ² V ⁻¹)	References
Si ₂ Te ₃	405 nm 6 V	65	2.81×10^{12}	-	1
Bi ₂ Te ₃	650 nm 0.5 V	23.43	1.54×10 ¹⁰	-	2
Sb ₂ Te ₃	980 nm 1 V	21.7	1.22×10 ¹¹	-	3
WSe ₂	650 nm 1 V	7.55	3.0 ×10 ¹²	-	4
MoS ₂	532 nm 1.2 V	59	-	-	5
ReS ₂	633 nm 50 mV	16.14	-	-	6
2H-MoS2 /1T@2H- MoS2	530 nm 20 V	1227	4.84 ×10 ¹¹	-	7
Black Arsenic Phosphorus	2400 nm 0V	0.18	4.9×10 ⁹	-	8
InSe	685 nm 0 V	0.244	10^{11} to 10^{12}	-	9
MoS ₂	561 nm	880	-	48 × 10-7	10
MoS ₂ - UCNP	532 nm	81	6.8 × 10 ¹³	8.4 ×10 ⁻⁵	11
Si ₂ Te ₃	633 nm 10 V	1396	$\sim 2.52 \times 10^{12}$	~2.74×10 ⁻⁴	This Work

Table S1. Comparison of performances of other 2D photodetectors

References

- J. W. Chen, C. Y. Tan, G. Li, L. J. Chen, H. L. Zhang, S. Q. Yin, M. Li, L. Li and G. H. Li, *Small*, 2021, 17, 2006496.
- J. L. Liu, H. Wang, X. Li, H. Chen, Z. K. Zhang, W. W. Pan, G. Q. Luo, C. L. Yuan, Y. L. Ren and W. Lei, *J. Alloys Compd.*, 2019, **798**, 656.
- K. Zheng, L.-B. Luo, T.-F. Zhang, Y.-H. Liu, Y.-Q. Yu, R. Lu, H.-L. Qiu, Z.-J. Li and J. C. A. Huang, *J. Mater. Chem. C*, 2015, 3, 9154.
- C. Zhou, S. Zhang, Z. Lv, Z. Ma, C. Yu, Z. Feng and M. Chan, *npj 2D Mater. Appl.*, 2020, 4, 46.
- W. W. Tang, C. Liu, L. Wang, X. Chen, M. Luo, W. Guo, S.-W. Wang and W. Lu, *Appl. Phys. Lett.*, 2017, 111, 153502.
- E. Zhang, Y. Jin, X. Yuan, W. Wang, C. Zhang, L. Tang, S. Liu, P. Zhou, W. Hu and F. Xiu, *Adv. Funct. Mater.*, 2015, 25, 4076.
- W. Wang, X. Zeng, J. H. Warner, Z. Guo, Y. Hu, Y. Zeng, J. Lu, W. Jin, S. Wang, J. Lu,
 Y. Zeng and Y. Xiao, ACS Appl. Mater. Interfaces, 2020, 12, 33325.
- M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu and F. Miao, *Sci. Adv.*, 2017, 3, e1700589.
- M. Dai, H. Chen, R. Feng, Y. Hu, H. Yang, G. Liu, X. Chen, J. Zhang, C.-Y. Xu and P.A. Hu, ACS Nano, 2018, 12, 8739.

- O. L.-Sanchez, D. Lembke, M. Kayci, A. Radenovic and A. Kis, *Nat. Nanotechnol.*, 2013, 8, 497.
- M. K. Thakur, A. Gupta, M. Y. Fakhri, R. S. Chen, C. T. Wu, K. H. Lin and S. Chattopadhyay, *Nanoscale*, 2019, 11, 9716.