## **Supporting Information**

Multifunctional pyridine styrylphenanthroimidazoles: Electron transport materials for blue FOLEDs with low efficiency roll-off and host for PHOLEDs with low turn-on voltage Jayaraman Jayabharathi\*, Sekar Sivaraj, Venugopal Thanikachalam, Jagathratchagan Anudeebhana

Department of Chemistry, Annamalai University, Annamalainagar, Tamilnadu- 608 002, India, Email: jtchalam2005@yahoo.co.in

Address for correspondence

Dr. J. Jayabharathi Professor of Chemistry Department of Chemistry Annamalai University Annamalai nagar 608 002 Tamilnadu, India. Tel: +91 9443940735 E-mail:jtchalam2005@yahoo.co.in **Contents:** 

- SI-1: Scheme S1
- **SI-2: Experimental Section**
- SI-3: Natural Transition Orbitals: Figures S1-S3
- SI-4: Solvatochromism: Figures S4 & S5
- SI-5: Tables: S1-S6

SI-1: Scheme S1. Synthetic route of electron transport materials.



### **SI-2.** Experimental Section

### SI-2.1. Measurements

<sup>1</sup>H and <sup>13</sup>C NMR measurements have been recorded on Bruker 400 MHz spectrometer and mass spectra were recorded on Agilent LCMS VL SD. The UV-Vis spectra were measured on Lambda 35 PerkinElmer (solution)/ Lambda 35 spectrophotometer (RSA-PE-20) (film). The emission spectra were measured with Perkin Elmer LS55 spectrometer and quantum yield was recorded with fluorescence spectrometer (Model-F7100 with integrating sphere). The decomposition temperature ( $T_d$ ) and glass transition temperature ( $T_g$ ) were measured with Perkin Elmer thermal analysis system (10 °C min<sup>-1</sup>; N<sub>2</sub> flow rate - 100 ml min<sup>-1</sup>) and NETZSCH (DSC-204) (10 °C min<sup>-1</sup>; N<sub>2</sub> atmosphere), respectively. Fluorescence lifetime was estimated by time correlated single-photon counting (TCSPC) method on Horiba Fluorocube-01-NL lifetime system: nano LED is an excitation source with TBX-PS is detector; DAS6 software was employed to analyze the decay by reconvolution method. Oxidation potential of electron transport materials was measured from SP-200 electrochemical analyzer (Bilogic science instruments, France). Ferrocene was used as an internal standard with HOMO energy of -4.80 eV and 0.1 M tetrabutylammonium perchlorate in CH<sub>2</sub>Cl<sub>2</sub> as supporting electrolyte.

### SI-2.2. Synthesis of electron transport materials

The starting materials were obtained from Sigma-Aldrich and used without further purification. Synthetic route of these novel materials have been outlined in Scheme S1. The intermediates, 2-(4-bromostyryl)-1-(naphthalen-1-yl)-1H-phenanthro[9,10-d] imidazole (SPPI-C<sub>2</sub>Br), 1-(1-bromonaphthalen-5-yl)-2-styryl-1H-phenanthro[9,10-d] imidazole (SPPI-N<sub>1</sub>Br) and 2-(4-bromostyryl)-1-(1-bromonaphthalen-5-yl)-1H-phenanthro[9,10-d] imidazole (SPPI-C<sub>2</sub>N<sub>1</sub>Br<sub>2</sub>) was obtained through one-pot reaction [1].

A mixture of 3,6-dibromophenanthrene-9,10-dione (8.2 mmol), 3-(4-bromophenyl) acrylaldehyde (12.3 mmol) and 1-naphthylamine (50.0 mmol) for SPPI-C<sub>2</sub>Br [3,6-

dibromophenanthrene-9,10-dione (8.2 mmol), cinnamaldehyde (12.3 mmol) and 4bromonaphthalen-1-amine (50.0 mmol) for SPPI-N<sub>1</sub>Br/3,6-dibromophenanthrene-9,10-dione (8.2 mmol), 3-(4-bromophenyl) acrylaldehyde (12.3 mmol) and 4-bromonaphthalen-1-amine (50 mmol) for SPPI-C<sub>2</sub>N1Br and ammonium acetate (101.8 mmol) in glacial acetic acid (30 ml) was refluxed for 12 h (120 °C; N<sub>2</sub> stream). The reaction mixture was poured into ethanol and the separated solid SPPPI-C<sub>2</sub>Br was washed with methanol and dried. The solid SPPPI-C<sub>2</sub>Br was purified by column chromatography.

Suzuki cross-coupling reaction was employed to synthesize the target ETMs namely, 2-(4-(pyridin-3-yl)styryl)-1-(naphthalen-1-yl)-1H-phenanthro[9,10-d]imidazole (SPPI-C<sub>2</sub>Py), 1-(1-(pyridin-3-yl)naphthalen-4-yl)-2-styryl-1H-phenanthro[9,10-d]imidazole (SPPI-N<sub>1</sub>Py) and 2-(4-(pyridin-3-yl)styryl)-1-(1-(pyridin-3-yl)naphthalen-4-yl)-1H-phenanthro[9,10-d] imidazole (SPPI-C<sub>2</sub>N<sub>1</sub>Py). A mixture of SPPI-C<sub>2</sub>Br (SPPI-C<sub>2</sub>Py) or SPPI-N<sub>1</sub>Br (SPPI-N<sub>1</sub>Py) or SPPI-C<sub>2</sub>N<sub>1</sub>Br<sub>2</sub> (SPPI-C<sub>2</sub>N<sub>1</sub>Py) (4.0 mmol), pyridin-3-yl-boronic acid (4.0 mmol), Pd(PPh<sub>3</sub>)<sub>4</sub> (0.12 mmol) and K<sub>2</sub>CO<sub>3</sub> (15 ml of 2.0 M aqueous solution) in toluene (30 ml) and ethanol (15.0 ml) was stirred at 100 °C for 12 h. The reaction mixture was extracted with dichloromethane and purified by column chromatography to afford white powder. The synthesised electron transport materials have been characterized by NMR spectroscopy, mass spectrometry and elemental analysis.

## (i). 2-(4-bromostyryl)-1-(naphthalen-1-yl)-1H-phenanthro[9,10-d]imidazole (SPPI-C<sub>2</sub>Br)

Yield: 66 %. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>) δ (ppm): 6.80 (d, 2H), 7.19 (d, 2H), 7.30- 7.36 (m, 5H), 7.38 (t, 3H), 7.42 (d, 2H), 7.79 (m, 4H), 8.10 (t, 2H), 8.43 (s, 1H). <sup>13</sup>C NMR (100 MHz; CDCl<sub>3</sub>) δ (ppm): 109.0, 111.3, 113.0, 115.2, 117.8, 120.0, 122.1, 123.0, 124.0, 125.0, 126.0, 128.0, 130.0.

### (ii). 1-(1-bromonaphthalen-5-yl)-2-styryl-1H-phenanthro[9,10-d]imidazole (SPPI-N<sub>1</sub>Br)

Yield: 69 %.<sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>) δ (ppm): 6.82 (d, 2H), 7.08 (d, 2H), 7.20-7.30 (m,

6H), 7.45-7.50 (m, 4H), 7.70 (t, 2H), 7.82-7.88 (m, 3H), 8.12-8.20 (m, 2H). <sup>13</sup>C NMR (100 MHz;

CDCl<sub>3</sub>) δ (ppm): 110.8, 111.1, 122.0, 114.0, 115.0, 118.0, 120.4, 122.0, 124.0, 127.0, 130.2, 131.0, 132.0.

# (iii). 2-(4-bromostyryl)-1-(1-bromonaphthalen-5-yl)-1H-phenanthro[9,10-d]imidazole (SPPI-C<sub>2</sub>N<sub>1</sub>Br<sub>2</sub>)

Yield: 52%.<sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>) δ (ppm): 6.86 (d, 2H), 7.13 (d, 2H), 7.16-7.20 (m,

4H), 7.38-7.50 (m, 5H), 8.00-8.16 (m, 3H), 8.46 - 8.528 (m, 4H). <sup>13</sup>C NMR (100 MHz; CDCl<sub>3</sub>) δ (ppm): 100.0, 105.0, 111.3, 115.0, 120.0, 122.0, 125.1, 128.0, 129.0, 130.0, 132.3, 134.0, 136.0, 139.0, 140.0.

# (iv). 2-(4-(pyridin-3-yl)styryl)-1-(naphthalen-1-yl)-1H-phenanthro[9,10-d]imidazole (SPPI-C<sub>2</sub>Py).

Yield: 69 %.<sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>)  $\delta$  (ppm): 6.86 (d, 2H), 7.13 (d, 2H), 7.16 - 7.20 (m, 5H), 7.38-7.45 (m, 4H), 7.56-7.63 (m, 4H), 7.82-7.88 (m, 4H), 8.53 - 8.66 (m, 4H). <sup>13</sup>C NMR (100 MHz; CDCl<sub>3</sub>)  $\delta$  (ppm): 112.8, 122.4, 124.1, 127.2, 127.4, 127.6, 127.8, 128.3, 130.7, 131.5, 132.2, 133.2, 133.4, 134.1, 134.6, 135.2, 135.6, 141.5, 148.0, 149.1. MS: m/z. 523.2 [M<sup>+</sup>]; Calcd. 523.63. Anal. calcd (%) for C<sub>38</sub>H<sub>25</sub>N<sub>3</sub>: C, 87.16; H, 4.81; N, 8.02. Found: C, 87.10; H, 4.79; N, 8.00.

# (v). 1-(1-(pyridin-3-yl)naphthalen-4-yl)-2-styryl-1H-phenanthro[9,10-d]imidazole (SPPI-N<sub>1</sub>Py)

Yield: 52%.<sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>) δ (ppm): 6.99 (d, 2H), 7.10 (d, 2H), 7.14-7.21 (m, 3H), 7.30-7.44 (m, 5H), 7.4- 7.7 (m, 4H), 7.82-7.97 (t, 3H), 8.12 - 8.93 (m, 6H). <sup>13</sup>C NMR (100 MHz; CDCl<sub>3</sub>) δ (ppm): 112.8, 122.4, 124.6, 125.6, 126.3, 126.4, 126.6, 128.0, 128.3, 131.2, 131.5, 132.2, 133.4, 133.6, 135.2, 136.1, 141.5, 148.0, 149.1. MS: m/z. 523.2 [M<sup>+</sup>]; Calcd. 523.63. Anal. Calcd (%) for C<sub>38</sub>H<sub>25</sub>N<sub>3</sub>: C, 87.16; H, 4.81; N, 8.02. Found: C, 87.15; H, 4.78; N, 8.04.

# (vi). 2-(4-(pyridin-3-yl)styryl)-1-(1-(pyridin-3-yl)naphthalen-4-yl)-1H-phenanthro[9,10d]imidazole (SPPI-C<sub>2</sub>N<sub>1</sub>Py)

Yield: 69 %. <sup>1</sup>H NMR (400 MHz; CDCl<sub>3</sub>)  $\delta$  (ppm): 6.85 (d, 2H), 7.10 (d, 2H), 7.15-7.25 (m, 4H), 7.30-7.44 (m, 4H), 7.7 (t, 3H), 7.82-7.88 (m, 3H), 7.97(m, 8H), 8.93 (d, 2H). <sup>13</sup>C NMR (100 MHz; CDCl<sub>3</sub>)  $\delta$  (ppm): 112.8, 122.4, 124.0, 125.6, 126, 126.6, 127.4, 127.6, 128.3, 131.2, 131.5, 132.2, 133.6, 134.1, 135.2, 135.6, 141.1, 148.0, 149.1. MS: m/z. 600.23. [M<sup>+</sup>]; Calcd: 600.71. Anal. Calcd (%) for C<sub>43</sub>H<sub>28</sub>N<sub>4</sub>: C, 85.98; H, 4.70; N, 9.33. Found: C, 85.82; H, 4.68; N, 9.26.

## SI-2.3. Device fabrication and measurement

ITO glass (resistance 20  $\Omega$ /sq) was cleaned with acetone, deionized water and isopropanol and dried (120 °C) followed by UV treatment (20 min) and transferred into deposition system. The devices were fabricated by multiple source beam deposition method (vacuum pressure-4×10<sup>-5</sup> mbar). Evaporation rate of 2-4 Å s<sup>-1</sup> (organic materials) and 0.1 and 4 Å s<sup>-1</sup> for LiF and metal electrodes were applied, respectively. The thickness of each deposition layer was monitored with quartz crystal thickness monitor. The EL measurement was recorded with USB-650-VIS-NIR spectrometer (Ocean Optics, Inc, USA). The current density-voltage-luminance (J-V-L) characteristics was performed using source meter (Keithley 2450) equipped with LS-110 light intensity meter. The external quantum efficiency was determined from luminance, current density and EL spectrum assuming Lambertian distribution.

### SI-2.4. Computational details

The ground  $(S_0)$  (DFT) and excited  $(S_n^*)$  (TD-DFT) state characteristics of SPPI -C<sub>2</sub>Py, SPPI-N<sub>1</sub>Py and SPPI-C<sub>2</sub>N<sub>1</sub>Py were analyzed by Gaussian 09 program [2] and Multiwfn [2]. The natural transition orbitals (HONTOs & LUNTOs) with hole-particle contribution were studied in detail.







Figure S2. Distribution of natural transition orbital pairs with transition character of SPPI-N<sub>1</sub>Py [*f*-oscillator strength and % weights of hole-particle].



Figure S3. Distribution of natural transition orbital pairs with transition character of SPPI-C<sub>2</sub>N<sub>1</sub>Py [*f*-oscillator strength and % weights of hole-particle].

SI-4: Solvatochromism







Figure S5. Normalised emission spectra of (a) SPPI-C<sub>2</sub>Py; (b) SPPI-N<sub>2</sub>Py; (c) SPPI-C<sub>2</sub>N<sub>1</sub>Py and (d) Decay curve of SPPI-C<sub>2</sub>PY, SPPI-N<sub>1</sub>Py and SPPI-C<sub>2</sub>N<sub>1</sub>Py.

Figure S6. (a) Energy level diagram of hole only device (ITO/MoO<sub>3</sub> (6nm)/TAPC (50 nm)/MADN: 3 wt% BUBD-1 (50 nm)/MoO<sub>3</sub> (6 nm)/Al(100 nm)) and (b) electron only device (Al/LiF (1 nm)/ MADN: 3 wt% BUBD-1 (50 nm)/ SPPI-C<sub>2</sub>Py or SPPI-N<sub>1</sub>Py or SPPI-C<sub>2</sub>N<sub>1</sub>Py or BPhen (20 nm)/LiF (1 nm)/ Al(100 nm)); (c) Current density -Voltage (J-V) characteristics of hole-only and electron-only devices and (d) Comparison of device operational stability for devices.





Figure S7. EL spectra of (a) blue; (b) red and (c) yellow PHOLEDs at different voltages.

## SI-5: Tables

| States     | Excitation energy | Excitation coefficient | Δr intex | Oscillator<br>strength | μ    | NTO<br>Transitions          |
|------------|-------------------|------------------------|----------|------------------------|------|-----------------------------|
| <b>S</b> 1 | 3.22              | 0.4286                 | 8.5845   | 0.6813                 | 1.40 | $64\%$ $96 \rightarrow 97$  |
| S2         | 3.57              | 0.4042                 | 7.4312   | 0.1283                 | 0.45 | $96 \xrightarrow{25\%} 100$ |
| S3         | 3.64              | 0.4119                 | 3.4340   | 0.1583                 | 0.56 | $56\%$ $95 \rightarrow 96$  |
| S4         | 3.70              | 0.4224                 | 4.8019   | 0.0349                 | 0.30 | $95 \xrightarrow{28\%} 100$ |
| S5         | 3.85              | 0.4010                 | 7.5693   | 0.2970                 | 0.25 | $96 \xrightarrow{39\%}{99}$ |
| T1         | 1.34              | 0.7826                 | 3.2051   | 0.0007                 | 0.40 | $59\%$ $95 \rightarrow 97$  |
| T2         | 1.45              | 0.8526                 | 5.2762   | 0.0573                 | 0.25 | $94 \xrightarrow{70\%}{96}$ |
| T3         | 1.79              | 0.8352                 | 4.7198   | 0.0123                 | 0.25 | $52\% \\ 84 \rightarrow 96$ |
| T4         | 2.05              | 0.7002                 | 5.8626   | 0.0003                 | 0.49 | $95 \xrightarrow{24\%} 100$ |
| T5         | 2.10              | 0.6735                 | 5.1118   | 0.0225                 | 0.44 | $95 \xrightarrow{18\%}{96}$ |

Table S1. Computed excitation energy (eV), excitation coefficient, Δr intex (Å), oscillator strength (f) and dipolemoment (μ) for singlet and triplet states of SPPI-C<sub>2</sub>Py.

| States     | Excitation<br>energy | Excitation coefficient | Δr intex | Oscillator<br>strength | μ    | NTO<br>Transitions                                     |
|------------|----------------------|------------------------|----------|------------------------|------|--------------------------------------------------------|
| <b>S</b> 1 | 3.32                 | 0.4391                 | 4.9251   | 0.5242                 | 0.40 | $59\%$ $96 \rightarrow 97$                             |
| S2         | 3.35                 | 0.4150                 | 4.0085   | 0.5189                 | 0.25 | $96 \xrightarrow{45\%}{98}$                            |
| <b>S</b> 3 | 3.62                 | 0.4160                 | 2.7423   | 0.0120                 | 0.25 | $96 \xrightarrow{21\%}{99}$                            |
| S4         | 3.64                 | 0.4133                 | 3.9192   | 0.0498                 | 0.49 | $95 \xrightarrow{24\%} 100$                            |
| S5         | 3.77                 | 0.4212                 | 4.6690   | 0.0064                 | 0.44 | $92 \xrightarrow{27\%} 100$                            |
| T1         | 1.25                 | 0.3891                 | 3.6508   | 0.0000                 | 0.40 | $\begin{array}{c} 29\%\\95 \rightarrow 97\end{array}$  |
| T2         | 1.55                 | 0.3422                 | 5.2126   | 0.0000                 | 0.25 | $96 \xrightarrow{45\%}{98}$                            |
| Т3         | 1.77                 | 0.3525                 | 3.9134   | 0.0000                 | 0.25 | $\begin{array}{c} 59\%\\ 96 \rightarrow 97\end{array}$ |
| T4         | 2.21                 | 0.3107                 | 5.5096   | 0.0000                 | 0.49 | $95 \xrightarrow{32\%} 100$                            |
| T5         | 2.22                 | 0.2858                 | 5.3152   | 0.0000                 | 0.44 | $96 \xrightarrow{19\%} 100$                            |

Table S2. Computed excitation energy (eV), excitation coefficient, Δr intex (Å), oscillator strength (f) and dipole moment (μ) for singlet and triplet states of SPPI-N<sub>1</sub>Py.

| States | Excitation<br>energy | Excitation coefficient | <b>Δr</b> intex | Oscillator<br>strength | μ    | NTO<br>Transitions                                         |
|--------|----------------------|------------------------|-----------------|------------------------|------|------------------------------------------------------------|
| S1     | 3.244                | 0.4122                 | 7.3862          | 0.6383                 | 2.05 | $\begin{array}{r} 44\% \\ 110 \rightarrow 100 \end{array}$ |
| S2     | 3.33                 | 0.4478                 | 5.2105          | 0.4980                 | 0.58 | $\begin{array}{c} 32\%\\ 109 \rightarrow 98 \end{array}$   |
| S3     | 3.59                 | 0.3666                 | 7.1865          | 0.0120                 | 0.56 | $110 \xrightarrow{29\%} 100$                               |
| S4     | 3.60                 | 0.4221                 | 5.4879          | 0.0028                 | 0.99 | $\begin{array}{c} 39\%\\ 106 \rightarrow 99 \end{array}$   |
| S5     | 3.63                 | 0.3793                 | 5.4318          | 0.0430                 | 0.50 | $109 \xrightarrow{29\%}{98}$                               |
| T1     | 1.25                 | 0.3638                 | 4.3975          | 0.0007                 | 0.42 | <sup>59%</sup><br>95 → 97                                  |
| T2     | 1.48                 | 0.2913                 | 6.4795          | 0.0573                 | 0.17 | $94 \xrightarrow{70\%}{96}$                                |
| Т3     | 1.72                 | 0.3144                 | 7.5338          | 0.0123                 | 0.38 | $ \begin{array}{r} 52\%\\ 84 \rightarrow 96 \end{array} $  |
| T4     | 2.07                 | 0.2314                 | 5.5455          | 0.0003                 | 0.93 | $95 \xrightarrow{24\%} 100$                                |
| T5     | 2.22                 | 0.3332                 | 4.7561          | 0.0225                 | 0.52 | $\begin{array}{c} 18\%\\ 95 \rightarrow 96 \end{array}$    |

Table S3. Computed excitation energy (eV), excitation coefficient, Δr intex (Å), oscillator strength (f)) and dipole moment (μ) for singlet and triplet states of SPPI-C<sub>2</sub>N<sub>1</sub>Py.

| Solvents            | 3     | n    | f(ɛ,n) | $\lambda_{ab}$ | v <sub>ab</sub>     | λ <sub>em</sub> | v <sub>em</sub>     | v <sub>ss</sub>     |
|---------------------|-------|------|--------|----------------|---------------------|-----------------|---------------------|---------------------|
|                     |       |      |        | (nm)           | (cm <sup>-1</sup> ) | (nm)            | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |
| Hexane              | 1.88  | 1.37 | 0.0004 | 250            | 40000               | 387             | 25839.79            | 14160.20            |
| Dioxane             | 2.22  | 1.42 | 0.0214 | 249            | 40160.64            | 388             | 25773.19            | 14387.45            |
| Carbontetrachloride | 2.238 | 1.46 | 0.0110 | 252            | 39682.54            | 395             | 25316.45            | 14366.08            |
| Benzene             | 2.284 | 1.42 | 0.0266 | 253            | 39525.69            | 398             | 25125.63            | 14400.06            |
| Chloroform          | 4.81  | 2.22 | 0.1482 | 256            | 39062.5             | 410             | 24390.24            | 14672.25            |
| Ethyl acetate       | 6.09  | 1.41 | 0.1865 | 255            | 39215.69            | 407             | 24570.02            | 14645.66            |
| THF                 | 7.52  | 1.40 | 0.2096 | 254            | 39370.08            | 405             | 24691.35            | 14678.72            |
| Dichloromethane     | 9.08  | 1.42 | 0.2183 | 256            | 39062.5             | 410             | 24390.24            | 14672.25            |
| Acetonitrile        | 37.5  | 1.34 | 0.3053 | 258            | 38759.69            | 418             | 23923.44            | 14836.24            |

Table S4. Photophysical properties of SPPI-C<sub>2</sub>Py in different solvents.

| Solvents            | 3    | n    | f(ɛ,n) | λ <sub>ab</sub><br>(nm) | v <sub>ab</sub><br>(cm <sup>-1</sup> ) | λ <sub>em</sub><br>(nm) | v <sub>em</sub><br>(cm <sup>-1</sup> ) | v <sub>ss</sub><br>(cm <sup>-1</sup> ) |
|---------------------|------|------|--------|-------------------------|----------------------------------------|-------------------------|----------------------------------------|----------------------------------------|
| Hexane              | 1.88 | 1.37 | 0.0004 | 251                     | 39840.64                               | 347                     | 28818.44                               | 11022.19                               |
| Dioxane             | 2.22 | 1.42 | 0.0214 | 250                     | 40000                                  | 348                     | 28735.63                               | 11264.36                               |
| Carbontetrachloride | 2.23 | 1.46 | 0.0110 | 254                     | 39370.08                               | 357                     | 28011.20                               | 11358.87                               |
| Benzene             | 2.28 | 1.42 | 0.0266 | 256                     | 39062.5                                | 366                     | 27322.40                               | 11740.09                               |
| Chloroform          | 4.81 | 1.44 | 0.1482 | 255                     | 39215.69                               | 363                     | 27548.21                               | 11667.48                               |
| Ethyl acetate       | 6.09 | 1.41 | 0.1865 | 254                     | 39370.08                               | 360                     | 27777.78                               | 11592.30                               |
| THF                 | 7.52 | 1.40 | 0.2096 | 253                     | 39525.69                               | 358                     | 27932.96                               | 11592.73                               |
| Dichloromethane     | 9.08 | 1.42 | 0.2183 | 255                     | 39215.69                               | 363                     | 27548.21                               | 11667.48                               |
| Acetonitrile        | 37.5 | 1.34 | 0.3053 | 257                     | 38910.50                               | 369                     | 27100.27                               | 11810.23                               |

Table S5. Photophysical properties of SPPI- $N_1$ Py in different solvents.

| Solvents            | 3    | n    | f(ɛ,n) | $\lambda_{ab}$ | v <sub>ab</sub>     | $\lambda_{em}$ | v <sub>em</sub>     | V <sub>ss</sub>     |
|---------------------|------|------|--------|----------------|---------------------|----------------|---------------------|---------------------|
|                     |      |      |        | (nm)           | (cm <sup>-1</sup> ) | (nm)           | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |
| Hexane              | 1.88 | 1.37 | 0.0004 | 248            | 40322.58            | 377            | 26525.19            | 13797.38            |
| Dioxane             | 2.22 | 1.42 | 0.0214 | 247            | 40485.83            | 378            | 26455.03            | 14030.80            |
| Carbontetrachloride | 2.23 | 1.46 | 0.0110 | 250            | 40000               | 385            | 25974.02            | 14025.97            |
| Benzene             | 2.28 | 1.42 | 0.0266 | 251            | 39840.64            | 388            | 25773.19            | 14067.44            |
| Chloroform          | 4.81 | 1.44 | 0.1482 | 254            | 39370.08            | 401            | 24937.65            | 14432.42            |
| Ethyl acetate       | 6.09 | 1.41 | 0.1865 | 253            | 39525.69            | 398            | 25125.63            | 14400.06            |
| THF                 | 7.52 | 1.40 | 0.2096 | 252            | 39682.54            | 395            | 25316.45            | 14366.08            |
| Dichloromethane     | 9.08 | 1.42 | 0.2183 | 254            | 39370.08            | 400            | 25000               | 14370.08            |
| Acetonitrile        | 37.5 | 1.34 | 0.3053 | 256            | 39062.5             | 408            | 24509.80            | 14552.69            |

Table S6. Photophysical properties of SPPI- $C_2N_1Py$  in different solvents.

 $\eta_p(lm/W)$ Emitter  $V_{on}(V)$  $L(cd/m^2)$ EL(nm)  $\eta_c(cd/A)$ CIE(x,y)ref SPI-C<sub>2</sub>Py 2.8 20236 482 14.28 9.32 (0.15, 0.31)This work SPI-N<sub>1</sub>Py 3.0 15589 482 9.63 4.74 (0.15, 0.31)This work 2.6 19108 482 16.93 11.23 (0.15, 0.31)This work SPI- C<sub>2</sub>N<sub>1</sub>Pv 3.4 419 4.9 4.3 (0.15, 0.08)3 **Cz-DPVI** 13629 4 PPI 3.8 3307 412 0.71 0.40 (0.161, 0.065)(0.161, 0.049)4 mTPA-PPI 3.2 4065 404 0.84 0.48 8.5 70 440 0.01 (0.16, 0.11)5 L-BPPI(50nm) -295 5 L-BPPI(40nm) 6.5 440 (0.16, 0.11)0.13 \_ L-BPPI(30nm) 5 5.0 420 440 0.40 (0.16, 0.10)-5 L-BPPI(20nm) 4.5 391 440 0.68 (0.16, 0.10)\_ 5 Z-BPPI(50nm) 6.5 105 440 0.07 (0.17, 0.12)-Z-BPPI(40nm) 502 440 (0.16, 0.12)5 5.0 0.34 \_ 5 Z-BPPI(30nm) 4.5 267 440 0.45 (0.16, 0.12)\_ 5 Z-BPPI(20nm) 5.0 100 440 0.31 (0.16, 0.11)-6 MADN(BUBD) 7.8 440 2.1 (0.15, 0.10)\_ -7 **CPPPI** 3322 420 0.65 0.48 (0.165, 0.050)-7 4329 1.53 **PPICPPPI** 428 0.86 (0.166, 0.056)-8 2.8 450 1.87 PhBPI \_ 1.85 9 bilayer-TPBI 3.2 \_ 468 2.03 1.00 (0.15, 0.15)1.83 1.58 (0.15, 0.09)10 **TPA-BPI** 2.8 448 -**DPVBi** 7.5 457 0.03 (0.15, 0.13)\_ -11 **DPVICz** 4.2 470 0.92 (0.15, 0.22)11 \_ -**DPVTCz** 3.8 470 1.94 (0.14, 0.22)11 --3,6-DPVTCz 5.0 449 0.11 (0.15, 0.11)11 \_ PEDOt-PSS: 3 (100nm) 4.0 2800 460 0.61 0.14 (0.15, 0.14)12 PEDOt-PSS:3(50 nm) 3 10600 407 1.68 (0.16, 0.13)12 1.10 392 PEDOt-PSS:4(40nm) 2.5 21200 1.90 1.55 (0.16, 0.14)12 2.7 0.15, 0.10 BBTPI 5.48 4.77 13 \_ \_ 2.8 4.62 4.55 0.15, 0.08 BiPI-1 14 \_ \_ **3-CzPOPPI** 2.9 2.71 2.73 0.15, 0.06 15 \_ \_ 1.88 TTP-TPI 3.1 2.10 0.16, 0.05 16 \_ \_ 2.9 3.13 3.22 0.16, 0.07 **DPT-TPI** 16 \_ \_ **PMSO** 3.2 4.64 4.0 0.152, 0.077 17 --PPI-2TPA 4.40 0.150, 0.063 3.0 4.60 18 \_ \_ PPI-2NPA 3.0 \_ 3.98 3.88 0.151, 0.066 18 \_ 0.157, 0.074 **TPIBNCz** 3.2 3.29 2.80 19 -\_ PPi-Pid + CBP 4.13 0.151, 0.076 20 3.15 -\_ -

 Table S7. Summary of blue efficiencies with reported efficiencies.

| Emittor   | Von        | L                    | EL         | EQE   | η <sub>c</sub> | η <sub>p</sub> | CIE          | nof       |
|-----------|------------|----------------------|------------|-------|----------------|----------------|--------------|-----------|
| Emitter   | <b>(V)</b> | (cd/m <sup>2</sup> ) | (nm)       | (%)   | (cd/A)         | (lm/W)         | (x,y)        | rei       |
| B1        | 2.6        | 8961                 | 478        | 18.56 | 34.32          | 32.09          | (0.15,0.37)  | This work |
| <b>B2</b> | 3.0        | 8032                 | <b>478</b> | 16.32 | 30.65          | 28.32          | (0.15,0.37)  | This work |
| <b>B3</b> | 2.5        | 10238                | <b>478</b> | 22.43 | 43.23          | 40.54          | (0.15,0.37)  | This work |
| 1         | 7          | 1390                 | 474        | 1.9   | 3.9            | 1.4            | (0.17, 0.38) | 21        |
| 2         | 7          | 1440                 | 472        | 3.8   | 7.1            | 2.7            | (0.17, 0.36) | 21        |
| 3         | 7          | 1080                 | 472        | 4.3   | 10.1           | 4.0            | (0.24, 0.43) | 21        |
| 4         | 9          | 470                  | 472        | 5.2   | 8.9            | 3.1            | (0.24, 0.41) | 21        |
| 5         | 6.5        | 2290                 | 477        | 4.6   | 10.1           | 3.6            | (0.16, 0.38) | 21        |
| 6         | 7          | 1560                 | 478        | 3.2   | 7.7            | 2.7            | (0.18, 0.43) | 21        |
| 5         | 7          | 5455                 | 477        | 8.7   | 19.1           | 6.6            | (0.18, 0.39) | 21        |
| 1         | 6          | 1960                 | 472        | 2.8   | 4.4            | 2.0            | (0.16, 0.29) | 21        |
| 1         | 5.5        | 1640                 | 472        | 3.3   | 6.3            | 3.3            | (0.16, 0.33) | 21        |
| 1         | 6          | 1800                 | 472        | 2.5   | 5.2            | 2.4            | (0.17, 0.36) | 21        |
| 1         | 6.5        | 1410                 | 474        | 1.4   | 3.2            | 1.3            | (0.19, 0.39) | 21        |
| 1         | 7          | 1430                 | 478        | 0.7   | 1.7            | 0.6            | (0.21, 0.41) | 21        |
| 5         | 8          | 530                  | 478        | 1.9   | 2.1            | 0.8            | (0.17, 0.25) | 21        |
| 5         | 7          | 920                  | 474        | 4.7   | 7.0            | 3.4            | (0.16, 0.35) | 21        |
| 5         | 5.5        | 2850                 | 478        | 5.5   | 11.8           | 5.6            | (0.17, 0.38) | 21        |
| 5         | 5          | 4600                 | 478        | 6.8   | 14.9           | 7.7            | (0.17, 0.40) | 21        |
| 5         | 5          | 4370                 | 478        | 6.8   | 15.1           | 7.7            | (0.17, 0.41) | 21        |
| 5         | 5          | 4600                 | 478        | 10.4  | 23.7           | 12.6           | (0.18, 0.40) | 21        |

 Table S8. Summary of blue PHOLEDs efficiencies with reported efficiencies.

| Emitter   | Von(V)     | $L(cd/m^2)$    | EL(nm)     | EQE(%)         | η <sub>c</sub> (cd/A) | η <sub>p</sub> (lm/W) | CIE(x,y)                   | ref                    |
|-----------|------------|----------------|------------|----------------|-----------------------|-----------------------|----------------------------|------------------------|
| R1<br>R2  | 2.6<br>2.6 | 40876<br>32013 | 564<br>564 | 15.67<br>13.32 | 17.78<br>16.31        | 16.34<br>14.89        | (0.62,0.36)<br>(0.62,0.36) | This work<br>This work |
| <b>R3</b> | 2.6        | 44879          | 564        | 18.56          | 25.7                  | 22.68                 | (0.62,0.36)                | This work              |
| TPP       | -          | 42             | 655        |                |                       | -                     | (0.70, 0.28)               | 22                     |
| TPC       | -          | 100            | 660        |                | -                     | 0.061                 | (0.67, 0.29)               | 23                     |
| TPDPP     | -          | 150            | 635        |                | -                     | 0.035                 | (0.69, 0.29)               | 24                     |
| ACY       | -          | 6400           | -          |                | -                     | 1.3                   | (0.68, 0.32)               | 25                     |
| CQY       | -          | 1000           | -          |                | -                     | 0.28                  | (0.70, 0.30)               | 25                     |
| BDPMB     | -          | 2880           | 640        |                | 1.34                  | -                     | (0.67, 0.33)               | 26                     |
| NPAMLMe   | -          | 8000           | 650        |                | 1.5                   | 0.9                   | (0.66, 0.32)               | 27                     |
| ACEN3     | -          | 2705           | 630        |                | 0.31                  | 0.27                  | (0.65, 0.34)               | 28                     |
| ACEN4     | -          | 1528           | 630        |                | 0.28                  | 0.12                  | (0.64, 0.32)               | 28                     |
| BZTA2     |            | 9138           | 626        |                | 2.0                   | 1.6                   | (0.63, 0.35)               | 29                     |
| BZTA1     | -          | 8087           | 640        |                | 0.91                  | 0.58                  | (0.63, 0.35)               | 29                     |
| INDMLMe   | -          | 1750           | 650        |                | -                     | -                     | (0.63, 0.36)               | 30                     |
| pAAA      | -          | -              | 616        |                | 0.6                   | -                     | (0.63, 0.36)               | 31                     |

 Table S9. Summary of red PHOLEDs efficiencies with reported efficiencies.

| <b>E</b> :44 or                        | Von  | L                    | EQE   | CE     | PE     |                |           |  |
|----------------------------------------|------|----------------------|-------|--------|--------|----------------|-----------|--|
| Emitter                                | (V)  | (cd/m <sup>2</sup> ) | (%)   | (cd/A) | (lm/W) | CIE(x,y)       | rei       |  |
| SPPI-C <sub>2</sub> py                 | 2.7  | 94231                | 21.67 | 65.32  | 36.34  | (0.49,0.50)    | This work |  |
| SPPI-N <sub>1</sub> py                 | 2.7  | 92645                | 20.56 | 62.67  | 34.88  | (0.49, 0.50)   | This work |  |
| SPPI- C <sub>2</sub> N <sub>1</sub> py | 27   | 99863                | 25.89 | 70.53  | 40.86  | (0.49, 0.50)   | This work |  |
| Y-1                                    | 3.1  | 11360                | -     | 10.54  | -      | -              | 32        |  |
| Y-2                                    | 5.2  | 9311                 | -     | 6.5    | -      | -              | 32        |  |
| Y-3                                    | 3.2  | 14270                | -     | 11.84  | -      | -              | 32        |  |
| PO-01 : TCTA                           | 8.8  | 70                   | 10.9  | 34.0   | 12.2   | (0.49, 0.50)   | 33        |  |
| PO-01 : CBP                            | 9.6  | 295                  | 18.3  | 53.9   | 17.7   | (0.51, 0.49)   | 33        |  |
| PO-01: TPBI                            | 6.7  | 420                  | 17.2  | 50.3   | 23.7   | (0.51, 0.49)   | 33        |  |
| PO-01 : DBFTrz                         | 7.7  | 391                  | 18.0  | 54.5   | 22.4   | (0.51, 0.49)   | 33        |  |
| PO-01 : CTA:DBFTrz                     | 7.0  | 105                  | 18.5  | 56.0   | 25.2   | (0.50, 0.49)   | 33        |  |
| PO-01 : CBP:TPBI                       | 6.9  | 502                  | 16.5  | 47.8   | 21.7   | (0.50, 0.48)   | 33        |  |
| PO-01 : CBP:DBFTrz                     | 7.9  | 267                  | 19.0  | 58.4   | 23.3   | (0.50, 0.49)   | 33        |  |
| 5a                                     | 5.93 | 2862                 | 5.28  | 17.63  | 9.38   | (0.49, 0.51)   | 34        |  |
| 5b                                     | 8.29 | 23857                | 7.17  | 13.01  | 3.74   | (0.49, 0.51)   | 34        |  |
| 5c                                     | -    | 51960                | 3.61  | 13.01  | 0.48   | (0.49, 0.51)   | 34        |  |
| C1                                     | 2.8  |                      | 4.5   | 13.3   |        | $(0.50\ 0.49)$ | 35        |  |
| C2                                     | 2.9  |                      | 6.9   | 21.2   |        | (0.47, 0.51)   | 35        |  |
| D1                                     | 2.9  |                      | 2.8   | 8.07   |        | (0.41, 0.46)   | 35        |  |
| D2                                     | 2.9  |                      | 8.7   | 28.0   |        | (0.44, 0.54)   | 35        |  |
| III                                    | 3.4  | 40700                | 15.1  | 45.2   | 40.1   | (0.50, 0.49)   | 36        |  |
| (F-BT)2Ir(acac)                        | -    |                      | 14.6  | 45.6   | 55.1   | -              | 37        |  |
| pPhBICP                                | 2.2  | 31 950               | 19.3  | 57.2   | 59.8   | (0.51, 0.49)   | 38        |  |
| mPhBICP                                | 3.1  | 34 350               | 16.9  | 49.6   | 46.4   | (0.51, 0.49)   | 38        |  |
| pPhBINCP                               | 3.0  | 33 200               | 19.3  | 57.3   | 55.3   | (0.50, 0.48)   | 38        |  |
| MPhBINCP                               | 2.8  | 32 700               | 17.5  | 52.9   | 54.7   | (0.49, 0.49)   | 38        |  |

 Table S10. Summary of yellow PHOLEDs efficiencies with reported devices.

#### References

- J. Jayabharathi, J. Anudeebhana, V. Thanikachalam, S. Sivaraj, *RSC Adv.*, 2020, 10, 8866-8879.
- [2] (a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian, Inc., Wallingford CT (Revision A.02), Gaussian, Inc., Wallingford, CT*. 2009.
- [3] J. Jayabharathi, R. Ramyaa, V. Thanikachalam, P. Jeeva and E. Sarojpurani, *RSC Adv.*, 2019, 9, 2948-2966.
- [4] H. Liu, Q. Bai, L. Ya, H. Zhan, H. Xu, S. Zhang, W. Li, Y. Gao, J. Li, P. Lu, H. Wang,
  B. Yang and Y. Ma, *Chem. Sci.*, 2015, 6, 3797-3804.
- [5] Z. Wang, Y. Feng, H. Li, Z. Gao, X. Zhang, P. Lu, P. Chen, Y. Mab and S. Liu, *Phys. Chem. Chem. Phys.*, 2014, 16, 10837-10843.
- [6] Y. F. Chang, H. F. Meng, G. L. Fan, K. T. Wong, H. W. Zan, H. W. Lin, H. L. Huang and S. F. Horn, *Org. Electron.*, 2016, 29, 99-106.

- [7] X. L. Li, X. Ouyang, D. Chen, X. Cai, M. Liu, Z. Ge, Y. Cao and S. J. Su, *Nanotechnol.*, 2016, 27, 124001-124011.
- [8] X. L. Li, X. Ouyang, D. Chen, X. Cai, M. Liu, Z. Ge, Y. Cao and S. J. Su, *Nanotechnol.*, 27, 12.
- [9] Y. Zhang, T. Wai, N. F. Lua, Q. X. Tong, S. L. Lai, M. Y. Chan, H. L. Kwong and C. S. Lee, *Dyes Pigm.*, 2013, 98, 190-194.
- [10] G. Li, J. Zhao, D. Zhang, J. Zhu, Z. Shi, S. Tao, Feng Lu and Q. Tong, *New J. Chem.*, 2017, 41, 5191-5197.
- [11] S. Liu, F. He, H. Wang, H. Xu, C. Wang, F. Li and Y. Ma, *J. Mater. Chem.*, 2008, 18, 4802-4807.
- [12] S. Kim, B. Sanyoto, W. T. Park, S. Kim, S. Mandal, J. C. Lim, Y. Y. Noh and J. H. Kim, *Adv. Mater.*, 2016, 28, 10149-10154.
- [13] W. C. Chen, Y. Yuan, G. F. Wu, H. X. Wei, L. Tang, Q. X. Tong and C. S. Lee, Adv. Opt. Mater., 2014, 2, 626-631.
- [14] Z. L. Zhu, M. Chen, W. C. Chen, S. F. Ni, Y. Y. Peng, C. Zhang, Q. X. Tong, F. Lu and C. S. Lee, Org. Electron., 2016, 38, 323-329.
- [15] Z. L. Zhu, S. F. Ni, W. C. Chen, M. Chen, J. J. Zhu, Y. Yuan, Q. X. Tong, F. L. Wong and C. S. Lee, *J. Mater. Chem. C*, 2018, 6, 3584-3592.
- [16] Y. Yuan, J. X. Chen, F. Lu, Q. X. Tong, Q. D. Yang, H. W. Mo, T. W. Ng, F. L. Wong,
  Z. Q. Guo, J. Ye, Z. Chen, X. H. Zhang and C. S. Lee, *Chem. Mater.*, 2013, 25, 4957-4965.
- [17] Z. Wang, W. Qiu, S. Y. Pang, Y. Zhou, Y. Gao, C. T. Guan and J. Jiang, *Chem. Eng.*, 2019, **371**, 842-847.
- B. Liu, Z. W. Yu, D. He, Z. L. Zhu, J. Zheng, Y. D. Yu, W. F. Xie, Q. X. Tong and C.
   S. Lee, *J. Mater. Chem. C*, 2017, 5, 5402-5410.

- [19] W. C. Chen, Y. Yuan, S. F. Ni, Q. X. Tong, F. L. Wong and C. S. Lee, *Chem. Sci.*, 2017,
  8, 3599-3608.
- [20] J. Zhao, B. Liu, Z. Wang, Q. Tong, X. Du, C. Zheng, H. Lin, S. Tao and X. Zhang, ACS Appl. Mater. Interfaces., 2018, 10, 9629-9637.
- [21] K. Mullen and U. Scherf, Org. Process Res. Dev., 2006, 10, 1081-1083.
- [22] (a) P. E., Burrows, S. R. Forrest, S. P. Silbey and M. E., Thompson, *Appl. Phys. Lett.*, 1996, 69, 2959-2961. (b) Z. Shen, P. E. Burrows, V. Bulovic, S. R. Forrest and M E. Thompson, *Sci.s*, 1997, 276, 2009-2011.
- [23] (a) Y. Sakakibara, S. Okutsu, T. Enokida and T. Tani, *Thin Sol. Film.*, 2000, 363, 29-32;
  (b) Y. Sakakibara, S. Okutsu, T. Enokida and T. Tani, *Appl. Phys. Lett.*, 1999, 74, 2587-2588.
- [24] X. H. Zhang, Z. Y. Xie, F. P. Wu, L. L. Zhou, O. Y. Wong, C. S. Lee H. L. Kwong, S.T. Lee and S. K. Wu, *Chem. Phys. Lett.*, 2003, **382**, 561-566.
- [25] J. Yu and Y. A Shirota, Chem. Lett., 2002, 31, 984-985.
- [26] P. Wang, Z. Hong, Z. Xie, S. Tong, O. Wong, C. S. Lee, N. Wong, L. Hung and Lee, *Chem. Commun.*, 2003, 0, 1664-1668.
- [27] W. C. Wu, H. C. Yeh, L. H. Chan and C. T. Chen, Adv. Mater., 2002, 14, 1072-1075.
- [28] T. H. Huang, J. T. Lin, Y. T. Tao and C. H. Chuen, Chem. Mater., 2003, 15, 4584-4862.
- [29] K. R. J. Thomas, J. T. Lin, M. Velusamy, Y. T. Tao and C. H. Chuen, *Adv. Funct. Mater.*, 2004, 14, 83-90.
- [30] C. W. Chiu, T. J. Chow, C. H. Chuen, H. Me. Lin and Y. T. Tao, *Chem. Mater.*, 2003, 15, 4527-4532.
- [31] B. X. Mi, Z. Q. Gao, M. W. Liu, K. Y. Chan, H. L. Kwong, N. B. Wong, C. S. Lee, L. S. Hung and S. T. Lee, *J. Mater. Chem.*, 2002, **12**, 1307-1310.

- [32] Y. Guan, W. Lin, Q. Wang, P. Zhou, B. Wei and Y. Liao, *J. Mater. Sci.*, 2004, 10, 1392-1320.
- [33] W. Song, J. Y. Lee, Y. J. Cho, H. Yu, H. Aziz and K.M. Lee, *Adv. Sci.* 2018, 5, 1700608-1700613.
- [34] C. L. Li, Y. J. Su, Y. T. Tao, P. T. Chou, C. H. Chien, C. C. Cheng and R. S. Liu, Adv. Funct. Mater. 2005, 15, 387-395.
- [35] J. P. Spindler, W. J. Begley, T. K. Hatwar, and D. Y. Kondakov, *Kodak*, 2009, 9, 420-423
- [36] J. H. Jou, Y. X. Lin, S. H. Peng, C. Ju. Li, Y. M. Yang, C. L. Chin, J. J. Shyue, S. S. Sun, M. Lee, C. T. Chen, M. C. Liu, C. C. Chen, G. Y. Chen, J. H. Wu, C. H. Li, C. F. Sung, M. J. Lee, and J. P. Hu. *Adv. Funct. Mater.* 2014, 24, 555-562.
- [37] Z. Zhang, S. Yue, Y. Wu, P. Yan, Q. Wu, D. Qu, S. Liu, and Y. Zhao, *Opt. Express.*, 2014, 22, 1815-1816.
- [38] H. Huang, Y. Wang, S. Zhuang, X. Yang, L. Wang, and C. Yang, J. Phys. Chem. C., 2012, 116, 19458-19466.