All-inorganic tin-doped Cs₂BiAgCl₆ double perovskite with stability blue photoluminescence WLEDs

Dayu Huang,^{a,b,c} Hui Xiao,^a Dongjie Liu,^a Qiuyun Ouyang,^b Youchao Kong,^d Bo Wang,^{c,*} Hongzhou Lian^{a,*} and Jun Lin^{a,c,*}

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of

Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

^b Key Laboratory of In-Fiber Integrated Optics, Ministry Education of China, and

College of Physics and Opotoelectronic Engineering, Harbin Engineering University,

Harbin 150001, China.

^c School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong,

529020, P. R. China.

^d Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, P. R. China.

Figure S1. PXRD patterns of the Sn-doped and pristine Cs₂BiAgCl₆.

Figure S2. The Rietveld refinement of the host and representative $Cs_2BiAgCl_6:0.01Sn^{2+}$.

x	a=b=c (Å)	V (Å ³)	R _{wp} (%)	R_p (%)
standard	10.777	1251.68		
0	10.771	1249.592	4.63	3.76
0.1	10.784	1254.240	5.76	4.53

Table S1. Main parameters of processing and refinement of the $Cs_2BiAgCl_6:xSn^{2+}$ samples.

Bond	Length (Å)	Optr. Cell	Neighbor atom coordinates			
		x = 0				
Cl-Cs	3.81403(4)	9000	0.25000 -0.25000 -0.25000			
Cl-Bi	2.57586(4)	1000	0.00000 0.00000 0.00000			
Cl-Ag	2.81533(4)	101 0-1-1	0.50000 0.00000 0.00000			
<i>x</i> = 0.1						
Cl-Cs	3.81304(7)	9000	0.25000 -0.25000 -0.25000			
Cl-Bi	2.65677(7)	1000	0.00000 0.00000 0.00000			
Cl-Ag	2.73541(8)	101 0-1-1	0.50000 0.00000 0.00000			

Table S2. Selected interatomic distances in samples.

x = 0	frac.	x	У	Z	100*U _{iso}
Cs^+	1.015	0.25	0.25	0.25	3.983
Bi ³⁺	0.983	0.00	0.00	0.00	2.107
Ag^+	1.016	0.50	0.50	0.50	2.413
Cl-	1.000	0.24	0.00	0.00	3.709
<i>x</i> = 0.1	frac.	x	у	Z	100*U _{iso}
x = 0.1 Cs ⁺	frac.	<i>x</i> 0.25	<i>y</i> 0.25	<i>z</i> 0.25	100*U _{iso} 4.025
$x = 0.1$ Cs^+ Bi^{3+}	frac. 1.025 1.051	x 0.25 0.00	<i>y</i> 0.25 0.00	z 0.25 0.00	100*U _{iso} 4.025 2.257
$x = 0.1$ Cs^+ Bi^{3+} Ag^+	frac. 1.025 1.051 1.152	x 0.25 0.00 0.50	<i>y</i> 0.25 0.00 0.50	z 0.25 0.00 0.50	100*U _{iso} 4.025 2.257 2.543

Table S3. Fractional atomic coordinates and isotropic displacement parameters in samples.

Figure S3. XPS spectra corresponding to (a) raw total, (b) raw Cs 3d, (c) raw Bi 4f, (d) raw Ag 3d, (e) raw Cl 2p, (f) raw Sn 3d, (g) O_2 treated total, (h) O_2 treated Cs 3d, (i) O_2 treated Bi 4f, (j) O_2 treated Ag 3d, (k) O_2 treated Cl 2p, (l) O_2 treated Sn 3d.

Figure S4. PL for Cs₂BiAgCl₆:0.01Sn²⁺.

Figure S5. (a) TL for $Cs_2BiAgCl_6:0.1Sn^{2+}$, (b) Differential scanning calorimetry (DSC) curves of pristine $Cs_2BiAgCl_6:xSn^{2+}$ in heating progress.

Figure S6. (a) XRD of pristine and $Cs_2BiAgCl_6:0.2Sn^{2+}$ after being exposed to air for 100 days, (b) PL intensity of pristine and $Cs_2BiAgCl_6:0.1Sn^{2+}$ after being exposed to air for 100 days.