Supporting Information

Ultralow Thermal Conductivity through the interplay of composition and disorder between thick and thin layers of Makovickyite structure

Srikanth Balijapelly,^a Ashlee Hauble,^b Mathew Pollard,^c Morgane Poupon,^d Váčlav Petříček,^d Jeremy Lee Watts,^e Yew San Hor,^c Susan M. Kauzlarich,^b and Amitava Choudhury^{a, *}

^aDepartment of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409,

USA

^bDepartment of Chemistry, One Shields Avenue, University of California, Davis, California

95616, United States

^cDepartment of Physics, Missouri University of Science and Technology, Rolla, MO 65409, USA

^dInstitute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic

^eDepartment of Materials Science and Engineering, Missouri University of Science and

Technology, Rolla, MO 65409, USA

SI No	Content	Page No
Table S1	Refined parameters for the split model and anharmonic model	3
Table S2	Atomic coordinates and isotropic thermal displacement parameters for compound I	4
Table S3	Atomic coordinates and isotropic thermal displacement parameters for compound II	5
Table S4	Atomic coordinates and isotropic thermal displacement parameters for compound III	6
Table S5	Anisotropic thermal displacement parameters for compound I	7
Table S6	Anisotropic thermal displacement parameters for compound II	8
Table S7	Anisotropic thermal displacement parameters for compound III	9
Table S8	Refined unit cell parameters and convergence factor from Rietveld refinement of PXRD data of I – III	10
Figure S1	Diffraction pattern projected on reciprocal lattice	11
Figure S2	The probability density function p.d.f. is calculated from the refined anharmonic ADPs in the direct space	12
Figure S3	. Rietveld refinement plots for I – III	13
Figure S4	PXRD comparison of hot-pressed samples for II and III	14
Figure S5	DSC curves of I , II and III	15
Figure S6	Magnetic field vs Hall resistivity (a) compound II (b) compound III	16

Table S1. Table showing the similar fit with the same number of refined parameters indicating reasonable support for split positions Bi3/Pb1 and no additional benefit for the anharmonic refinements.

	R(obs)	wR2(obs)	R(all)	wR2(all)	GOF(all)	N(ref)	N(par)	ρ(max)	ρ(min)
Split-model	0.0394	0.1154	0.0446	0.1194	1.42	1064	71	2.61	-2.66
_									
Anharm-3	0.0401	0.1160	0.0453	0.1196	1.43	1064	71	2.13	-2.81
Anharm-4	0.0346	0.1037	0.0393	0.1070	1.28	1064	80	1.75	-1.73

Atom	Wyckoff	S.O.F	Х	Y	Z	U(eq)
		Ag	0.72Bi5.48Cu0.88	S9, I		
Bi(1)	4i	0.74	0.3498(1)	0	0.4347(1)	0.0020(1)
Ag(1)	4i	0.26	0.3498(1)	0	0.4347(1)	0.0020(1)
Bi(2)	4i	1	0.0530(1)	0	0.3076(1)	0.0022(1)
Bi(3)	4i	1	0.7480(1)	0	0.1232(1)	0.0026(1)
Ag(2)	2a	0.20	0	0	0	0.0077(5)
Cu(1)	4g	0.35	0	0.1963(16)	0	0.0037(2)
Cu(2)	4i	0.07	0.0224(17)	0.5	0.0531(17)	0.0030(6)
Cu(3)	4i	0.02	0.0410(60)	0.5	0.0040(60)	0.0029(6)
S(1)	2c	1	0	0	0.5	0.0017(1)
S(2)	4i	1	0.4100(2)	0	0.2707(2)	0.0020(1)
S(3)	4i	1	0.3576(2)	0	0.0426(2)	0.0014(1)
S(4)	4i	1	0.2928(2)	0	0.6249(3)	0.0026(1)
S(5)	4i	1	0.1010(2)	0	0.1383(2)	0.0019(1)

Table S2. Final atomic coordinates and equivalent isotropic displacement parameters of the atoms for compounds **I**. $U_{(eq)} = 1/3$ of the trace of the orthogonalized U_{eq} tensor.

Atom	Wyckoff	S.O.F	Х	У	Z	U(eq)		
	$Ag_{0.70}Bi_{5.30}Cu_{1.3}S_9$, II							
Bi(1)	4i	0.72	0.3494(1)	0	0.4347(1)	0.0021(1)		
Ag(1)	4i	0.28	0.3494(1)	0	0.4347(1)	0.0021(1)		
Bi(2)	4i	0.93	0.0524(1)	0	0.3086(1)	0.0020(1)		
Ag(2)	4i	0.07	0.0524(1)		0.3086(1)	0.0020(1)		
Bi(3)	4i	1	0.7482(1)	0	0.1237(1)	0.0026(1)		
Cu(1)	4g	0.34	0	0.2025(19)	0	0.0042(2)		
Cu(2)	4i	0.09	0.0216(12)	0.5	0.0513(13)	0.0033(4)		
Cu(3)	4i	0.1	0.270(20)	0	-0.0231(16)	0.0038(8)		
Cu(4)	2a	0.24	0	0	0	0.0040(5)		
S (1)	2c	1	0	0	0.5	0.0017(1)		
S(2)	4i	1	0.4097(2)	0	0.2706(2)	0.0020(1)		
S(3)	4i	1	0.3572(2)	0	0.0424(2)	0.0016(1)		
S (4)	4i	1	0.2934(2)	0	0.6239(3)	0.0026(1)		
S(5)	4i	1	0.1017(2)	0	0.1394(2)	0.0021(1)		

Table S3. Final atomic coordinates and equivalent isotropic displacement parameters of the atoms for compounds II. $U_{(eq)} = 1/3$ of the trace of the orthogonalized U_{eq} tensor.

Atom	Wyckoff	S.O.F	Х	у	Z	U(eq)			
	Ag _{0.34} Bi _{4.54} Cu _{1.98} PbS ₉ , III								
Bi(1)	4i	0.83	0.3493(1)	0	0.4336(1)	0.0020(1)			
Ag(1)	4i	0.17	0.3493(1)	0	0.4336(1)	0.0020(1)			
Bi(2)	4i	0.94	0.0520(1)	0	0.3092(1)	0.0020(1)			
Cu(3)	4i	0.06	-0.002(30)		0.2570(30)	0.0045(7)			
Bi(3)	4i	0.5	0.7547(3)	0	0.1166(2)	0.0027(1)			
Pb (1)	4i	0.5	0.7437(4)	0	0.1387(2)	0.0049(1)			
Cu(1)	4i	0.4	-0.0210(4)	0.5	-0.0762(7)	0.0059(3)			
Cu(2)	4i	0.33	0.0487(5)	0	-0.0444(8)	0.0046(2)			
Cu(2A)	4g	0.2	0	1780(40)	0	0.0064(5)			
S (1)	2c	1	0	0	0.5	0.0019(1)			
S(2)	4i	1	0.4094(2)	0	0.2707(2)	0.0020(1)			
S(3)	4i	1	0.3575(2)	0	0.0406(2)	0.0018(1)			
S (4)	4i	1	0.2933(4)	0	0.6258(2)	0.0026(1)			
S(5)	4i	1	0.0980(2)	0	0.1417(2)	0.0020(1)			

Table S4. Final atomic coordinates and equivalent isotropic displacement parameters of the atoms for compounds **III**. $U_{(eq)} = 1/3$ of the trace of the orthogonalized U_{eq} tensor.

Atoms	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
		Ag _{0.72} Bis	5.48Cu _{0.88} S ₉ , I			
Bi(1)	18(1)	18(1)	24(1)	0	4(1)	0
Ag(1)	18(1)	18(1)	24(1)	0	4(1)	0
Bi(2)	24(1)	22(1)	20(1)	0	4(1)	0
Bi(3)	29(1)	29(1)	18(1)	0	-2(1)	0
Ag(2)	91(9)	59(6)	59(6)	0	-57(6)	0
Cu (1)	20(2)	61(4)	30(3)	0	1(2)	0
Cu(2)	20(9)	58(8)	11(8)	0	3(8)	0
Cu(3)	18(14)	59(8)	7(11)	0	-4(11)	0
S(1)	17(2)	20(2)	14(2)	0	3(2)	0
S(2)	21(2)	18(2)	20(2)	0	1(1)	0
S(3)	18(1)	15(1)	11(1)	0	4(1)	0
S(4)	19(2)	18(2)	37(2)	0	0(1)	0

Table S5. Anisotropic displacement parameters (Å²x 10³) for **I**. The anisotropic displacement factor exponent takes the form: $-2p^2$ [$h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}$]

Atoms	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²		
Ag _{0.70} Bi _{5.30} Cu _{1.3} S ₉ , II								
Bi(1)	20(1)	20(1)	21(1)	0	3(1)	0		
Ag(1)	20(1)	20(1)	21(1)	0	3(1)	0		
Bi(2)	24(1)	21(1)	16(1)	0	3(1)	0		
Ag(2)	24(1)	21(1)	16(1)	0	3(1)	0		
Bi(3)	31(1)	28(1)	16(1)	0	-3(1)	0		
Cu (1)	21(3)	78(5)	27(3)	0	1(2)	0		
Cu(2)	13(7)	64(7)	26(7)	0	14(6)	0		
Cu(3)	29(12)	65(8)	17(5)	0	-2(7)	0		
Cu(4)	24(10)	70(7)	23(6)	0	-3(6)	0		
S (1)	18(2)	19(2)	14(2)	0	2(2)	0		
S(2)	21(1)	21(2)	16(1)	0	0(1)	0		
S(3)	19(1)	19(1)	10(1)	0	1(1)	0		
S(4)	20(2)	19(2)	38(2)	0	-2(1)	0		
S(2) S(3) S(4)	21(1) 19(1) 20(2)	21(2) 19(1) 19(2)	16(1) 10(1) 38(2)	0 0 0	0(1) 1(1) -2(1)	0 0 0		

Table S6. Anisotropic displacement parameters (Å²x 10³) for **II**. The anisotropic displacement factor exponent takes the form: $-2p^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}$]

Atoms	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
		Ag _{0.34} Bi	4.54Cu1.98PbS9	, III		
Bi(1)	16(1)	19(1)	24(1)	0	2(1)	0
Ag(1)	16(1)	19(1)	24(1)	0	2(1)	0
Bi(2)	19(1)	20(1)	19(1)	0	1(1)	0
Cu(3)	59(15)	26(13)	51(15)	0	13(14)	0
Bi(3)	31(1)	27(1)	15(1)	0	-14(1)	0
Pb(1)	50(1)	24(1)	70(3)	0	6(2)	0
Cu(1)	32(3)	41(3)	94(5)	0	-14(3)	0
Cu(2)	31(3)	24(3)	74(5)	0	-17(3)	0
Cu(2A)	23(5)	110(10)	56(7)	0	-4(5)	0
S (1)	20(2)	15(2)	22(2)	0	2(2)	0
S(2)	17(2)	22(2)	20(2)	0	1(1)	0
S(3)	17(1)	18(1)	17(2)	0	0(1)	0
S(4)	15(2)	19(2)	41(2)	0	-5(1)	0

Table S7. Anisotropic displacement parameters (Å²x 10³) for **III**. The anisotropic displacement factor exponent takes the form: $-2p^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

	Ι	II	III
Formula	$Ag_{0.72}Bi_{5.48}Cu_{0.88}S_9$	Ag0.70Bi5.30Cu1.3S9	Ag0.34Bi4.54Cu1.98PbS9
Unit cell	a = 13.1832(7)	a = 13.1887(8)	a = 13.3373(20)
	b = 4.04828(15)	b = 4.04196(16)	b = 4.0391(3)
	c = 14.6292(9)	c = 14.6176(10)	c = 14.7888(24)
	$\beta = 99.401(3)$	$\beta = 99.501(4)$	$\beta = 99.822(9)$
Volume	770.26(4)	768.54(4)	785.00(8)
Rw	6.819	6.744	7.301
RF^2	9.526	8.494	10.866

Table S8. Refined lattice constants and final Rietveld refinement parameters for compounds, I - III.

Figure S1. Diffraction pattern from the raw data frames projected on reciprocal lattice. The used cell, a = 13.45, b = 4.069, and c = 14.958, $\beta = 99.86$. It can be seen from the above figure that there are only a few additional spots. However, there are no systematic unaccounted spots that would call for a cell doubling along c-axis.

Figure S2. The probability density function p.d.f. is calculated from the refined anharmonic ADPs in the direct space (from a, b, and c-directions). This means that there are no termination effects in such maps. Introduction of 4th order tensor leads to an unrealistic distribution of atoms in the Bi3/Pd1 site. On the other hand, the shape of the p.d.f with using only 3rd term seems to indicate split atom positions as we have used in the regular model.

Figure S3. Rietveld refinement plots for (a) $Ag_{0.72}Bi_{5.48}Cu_{0.88}S_9$, **I** (b) $Ag_{0.70}Bi_{5.30}Cu_{1.3}S_9$, **II** (c) $Ag_{0.34}Bi_{4.54}Cu_{1.98}PbS_9$, **III**, showing the observed, calculated and difference curve. Inset in (a) shows an enlarged view of the segment for $2\theta = 14$ to 26° . The arrows indicate the presence of minute quantity of an unknown impurity phase.

Figure S4. PXRD comparison with of hot-pressed samples with the simulated patterns for $Ag_{0.70}Bi_{5.30}Cu_{1.3}S_9$ (II), $Ag_{0.34}Bi_{4.54}Cu_{1.98}PbS_9$ (III).

Figure S5. DSC curves for Ag_{0.72}Bi_{5.48}Cu_{0.88}S₉ (**I**), Ag_{0.70}Bi_{5.30}Cu_{1.3}S₉ (**II**), Ag_{0.34}Bi_{4.54}Cu_{1.98}PbS₉ (**III**).

Figure S6. Magnetic field vs Hall resistivity (a) $Ag_{0.70}Bi_{5.30}Cu_{1.3}S_9$, **II** (b) $Ag_{0.34}Bi_{4.54}Cu_{1.98}PbS_9$, **III.**