Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Enhanced photoinduced mass migration in supramolecular azopolymers by H-

bond driven positional constraint

Fabio Borbone,^{*a,c} Stefano Luigi Oscurato,^{b,c} Salvatore Del Sorbo,^c Filippo Pota,^a Marcella Salvatore,^b Francesco Reda,^b Pasqualino Maddalena,^{b,c} Roberto Centore^a and Antonio Ambrosio^{*c}

^a Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126 Naples, Italy

^b Department of Physics E. Pancini, University of Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126 Naples, Italy

^c CNST@POLIMI - Fondazione Istituto Italiano di Tecnologia, Via Pascoli 70, 20133 - Milano - Italy

*Email: fabio.borbone@unina.it; antonio.ambrosio@iit.it

Scheme S1 Synthesis scheme of **1** ($R = CH_3$) and **2** ($R = OCH_3$). (i) 1,2-dichloroethane; (ii) triethylamine/ethanol/water.

Scheme S2 Synthesis scheme of **3**. (i) NaNO₂/HBF₄; (ii) phenol/NaOH; K₂CO₃/DMF/Me₂SO₄.

Fig. S1 Hydrogen bonds between NH₂ and OCH₃ in the crystal packing of **1-I**: N5–H···O1⁽ⁱ⁾: 0.85(5), 2.25(5), 3.090(5) Å, 169(3)°, (i)=x, 0.5-y, 0.5+z; N5–H···O2⁽ⁱⁱ⁾: 0.90(3), 2.33(3), 3.231(3) Å, 173(3)°, (ii)=1-x, 0.5+y, 1.5-z.

Fig. S2 Strong and weak hydrogen bonds in the crystal packing of **1-II**: N5–H···O1⁽ⁱ⁾: 0.90(2), 2.35(2), 3.131(2) Å, 145(2)°, N5–H···N2⁽ⁱ⁾: 0.90(2), 2.73(2), 3.549(3) Å, 152(2)°, (i)=1-x, 0.5-y, 0.5+z; N5–H···O2⁽ⁱⁱ⁾: 0.88(2), 2.64(2), 3.139(2) Å, 117(2)°, N5–H···N1⁽ⁱⁱ⁾: 0.88(2), 2.41(2), 3.211(3) Å, 151(2)°, (ii)=x, 0.5-y, 0.5+z. Only the most populated component of the disordered molecular portion is shown for clarity. Hanging contacts are not shown.

Fig. S3 Hydrogen bonds between NH_2 and OCH_3 in the crystal packing of **2**: N5A-H···O1A⁽ⁱ⁾: 0.86, 2.12, 2.969(2) Å, 169°, (i)=x, 1+y, z; N5A-H···O3B⁽ⁱⁱ⁾: 0.86, 2.26, 3.039(6) Å, 150°, (ii)=0.5-x, 0.5+y, z. Only the most populated component of the disordered molecule B is shown for clarity. Hanging contacts are not shown.

	1-I	1-11	2	
CCDC number	2073781	2073782	2073783	
Empirical formula	$C_{13}H_{15}N_5O_2$	$C_{13}H_{15}N_5O_2$	$C_{13}H_{15}N_5O_3$	
Formula weight	273.30	273.30	289.30	
Т (К)	293(2)	293(2)	293(2)	
λ (Å)	0.71073	0.71073	0.71073	
Crystal system	Monoclinic	Monoclinic	Orthorombic	
Space group	P21/c	P21/c Pbca		
<i>a</i> (Å)	10.039(4)	6.632(3)	13.7630(16)	
b (Å)	13.245(5)	20.892(8)	13.552(4)	
<i>c</i> (Å)	14.631(5)	10.929(4)	30.386(9)	
a (°)	90	90	90	
β(°)	132.51(2)	108.57(2)	90	
γ(°)	90	90	90	
V (Å ³)	1434.2(10)	1435.4(10)	5667(2)	
Z	4	4	16	
D _{calc} (Mg/m ³)	1.266	1.265	1.356	
μ (mm⁻¹)	0.090	0.090 0.100		
F(000)	576	576	2432	
hetarange (°)	2.43 – 27.50	2.77 - 27.50	2.50 - 27.50	
Reflections collected / unique	14192/3264	8904/3199	37423/6430	
[R(int)]	[0.0399]	[0.0335] [0.0389]		
Data/restraints/parameters	3264/0/191	3199/20/227	6430/153/452	
Goodness-of-fit on F ²	1.073	1.050	1.041	
FinalR1, wR2 indices [I>2s(I)]	0.0678, 0.1641	0.0488, 0.1267	0.0535, 0.1249	
Final R1, wR2 indices (all data)	0.1097, 0.1989	0.0828, 0.1482	0.0960, 0.1458	
Largest diff. peak / hole (eA ⁻³)	0.30/-0.29	0.19/-0.19	0.27/-0.27	

Table S1 Crystal data and structure refinement details for phase 1-I, 1-II and 2.

	1-AA	1-AA-RT	1-MA	
CCDC number	2073784	2073785	2073786	
Empirical formula	$C_{16}H_{20}N_5O_4$	$C_{16}H_{20}N_5O_4$	$C_{17}H_{21}N_5O_4$	
Formula weight	346.37	346.37	359.39	
Т (К)	173	293	173	
λ (Å)	0.71073	0.71073	0.71073	
Crystal system	Triclinic	Triclinic	Triclinic	
Space group	P-1	P-1 P-1		
<i>a</i> (Å)	8.095(2)	8.1330(10) 6.8530(7)		
b (Å)	9.351(2)	9.5050(12)	7.5100(16)	
<i>c</i> (Å)	11.6500(14)	11.7310(12)	17.512(3)	
a (°)	96.706(14)	95.988(11)	95.142(15)	
eta (°)	110.152(16)	110.027(12)	92.063(14)	
γ(°)	92.33(2)	92.936(9)	93.937(14)	
V (ų)	819.1(3)	843.69(18)	894.7(3)	
Z	2	2 2		
D _{calc} (Mg/m ³)	1.404	1.363 1.334		
μ (mm ⁻¹)	0.104	0.101 0.098		
F(000)	366	366 380		
hetarange (°)	2.69 - 27.50	2.67 - 27.50 2.34 - 27.5		
Reflections collected / unique	10072/3722	8542/3831 12221/4017		
[R(int)]	[0.0364]	[0.0344] [0.0405]		
Data/restraints/parameters	3722/0/238	3831/0/238 4017/0/256		
Goodness-of-fit on F ²	1.070	1.033	1.020	
Final <i>R1, wR2</i> indices [I>2s(I)]	0.0452, 0.1208	0.0503, 0.1328	0.0461, 0.1123	
Final R1, wR2 indices (all data)	0.0669, 0.1339	0.0909, 0.1581	0.0774, 0.1283	
Largest diff. peak / hole (eA ⁻³)	0.31/-0.28	0.27/-0.22	0.25/-0.23	

Table S2 Crystal data and structure refinement details for **1-AA**, **1-AA-RT** and **1-MA**.

Fig. S4. Absorption spectra of **1** in DMF solution (magenta line) and thin film of **PAA-1**_{0.5} (blue line) **PAA-1**_{0.75} (red line) and **PAA-1**_{1.0} (black line).

Fig. S5 Absorption spectra of **2** in DMF solution (magenta line) and thin film of **PAA-2**_{0.5} (blue line) **PAA-2**_{0.75} (red line) and **PAA-2**_{1.0} (black line).

Fig. S6. Absorption spectrum of **1** in ethyl acetate (black line), ethyl acetate containing a small amount of acetic acid (red line) and acetic acid (blue line).

Fig. S7. Absorption spectrum of **2** in ethyl acetate (black line), ethyl acetate containing a small amount of acetic acid (red line) and acetic acid (blue line).

	PAA-1 _x			PAA-2 _x			PAA-3 _x
	x = 0.5	x = 0.75	x = 1.0	x = 0.5	x = 0.75	x = 1.0	x = 1.0
λ _{max} (nm)	357	357	357	364	364	364	343
<i>n</i> @633 nm	1.668	1.679	1.687	1.684	1.698	1.706	1.638
Modulation depth (nm)	190	245	420	110	273	355	40
Diffraction Efficiency (%)	6.65	14.5	30.9	6.42	15.0	23.5	1.94

Tab. S3 Relevant data for the polymers.

Fig. S8 Refractive index dispersion of **PAA-1**_x (orange, magenta and black dashed line for x = 0.5, 0.75, 1.0 respectively), **PAA-2**_x (purple, green and red solid line for x = 0.5, 0.75, 1.0 respectively) and **PAA-3**_{1.0} (blue solid line).

Fig. S9 FT-IR spectra of **PAA** (black line), **PAA-1**_{0.5} (red line) **PAA-1**_{0.75} (blue line) and **PAA-1**_{1.0} (magenta line).

Fig. S10 FT-IR spectra of **2** (black line), **PAA-2**_{0.5} (red line) **PAA-2**_{0.75} (blue line) and **PAA-2**_{1.0} (magenta line).

Fig. S11 FTIR spectra of 3 (black line) and **PAA-3**_{1.0} in the wavenumber region 1060-1000 cm⁻¹.

Fig. S12 AFM cross-sectional profiles of SRGs inscribed on **PAA-1**_{0.75} (grey line) and **PAA-2**_{0.75} (purple line) in the same time lapse.

Fig. S13 AFM cross-sectional profiles of SRGs inscribed on **PAA-1**_{0.50} (blue line) and **PAA-2**_{0.50} (red line) in the same time lapse.

Fig. S14 Absorption spectra of **PAA-2**_{1.0} (black line) and **PAA-3**_{1.0} (red line) as thin films.

Fig. S15 Pump/relax curve (a) and plot of $ln(A_{\infty} - A(t))$ vs t (b) for the determination of *cis-trans* thermal isomerization rate k for **PAA-1**_{1.0}, **PAA-2**_{1.0} and **PAA-3**_{1.0}. A_{∞} is the signal average values at long times (t > 20 s).

Fig. S16 Cross-sectional AFM profiles (a) and UV-vis spectra (b) of **PAA-2**_{0.50} film before (blue line) and after (orange line) rinse with solvent.