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1 Molecular structures 

In Figure S1, schematic representation of the molecular structures of poly(p-phenylene-ethynylene)-alt-

poly(p-phenylene-vinylene) (PPE-PPV) backbone known as AnE-PVstat, fullerene derivatives [6,6]-

phenyl-C61-butyric acid methyl ester (PC60BM), 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-

indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2’,3’-d’]-s-indaceno[1,2-b:5,6-

b’]dithiophene (ITIC) and three additional non-fullerene acceptors (NFAs) derived from perylene diimide 

(PDI) dimers PDI2Ac2 (Pa2) (C6H13 = n-hexyl), DPP-(Ac-PDI)2 (DaP2) (C6H13 = n-hexyl, C8H17 = 2-

ethylhexyl) and TII-(Ac-PDI)2 (TaP2) (C6H13 = n-hexyl, C8H17 = 2-ethylhexyl), are shown. 

Figure S1: Schematic representation of the molecular structure of AnE-PVstat (C8H17 = n-octyl or 2-
ethylhexyl), PCBM, ITIC (C6H13 = n-hexyl), PDI2Ac2 (Pa2) (C6H13 = n-hexyl) , DPP-(Ac-PDI)2 (DaP2) 
(C6H13 = n-hexyl, C8H17 = 2-ethylhexyl) and TII-(Ac-PDI)2 (TaP2) (C6H13 = n-hexyl, C8H17 = 2-
ethylhexyl).
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Figure S2 illustrates the synthesis scheme for the preparation of the AnE-PVstat from comonomers, with 

octyloxy, and with 2-ethylhexyloxy side chains, by Horner-Wadsworth-Emmons polycondensation 

reaction1. The random incorporation of the comonomers yields a polymer with statistical successions of 

octyloxy and 2-ethylhexyloxy side chains.
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Figure S2: Schematic representation of the polycondensation of two dialdehydes with two 
bisphosphonates (monomer ration: 1/1/1/1) yielding the statistical copolymer AnE-PVstat.
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2 Current-voltage characteristics

In this section, I-V curves of the AnE-PVstat:NFA’s (ITIC and PDI based) solar cells prepared in 

conventional architecture. Figure S3 and Figure S4 show the IV curves in semi-logarithmic scales in dark 

and under illumination. AnE-PVstat:PC60BM based solar cell is shown for comparison. 
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Figure S3: Semi-logarithmic dark I-V of AnE-PVstat:PC60BM, AnE-PVstat:ITIC and AnE-PVstat:PDI 
based NFA’s solar cells in conventional architecture.
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Figure S4: Semi-logarithmic light I-V of AnE-PVstat:PC60BM, AnE-PVstat:ITIC and AnE-PVstat:PDI 
based NFA’s solar cells in conventional architecture.
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3 Cyclic voltammetry

In order to estimae the HOMO and LUMO of the designated donor and acceptor material cyclic 

voltammetry (CV) measurements were conducted. The corresponding data are presented in this section. 

Two approaches to evaluate the obtained results are considered. Electrochemical bandgap in the CT-state 

is determined as the difference between HOMO of the donors and LUMO of the acceptor.   
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Figure S6: Oxidation and reduction potentials of PBDB-T determined by CV.
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Figure S8: Oxidation and reduction potentials of PC60BM determined by CV.
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Figure S10: Oxidation and reduction potentials of ITIC determined by CV.

Table S1: HOMO-LUMO energy values determined by CV measurements and calculated band gaps.

Material Oxidation

onset         peak

Reduction

onset        peak

HOMO 
[eV]: 
onset

LUMO 
[eV]: 
onset

Electrochemical 
bandgap EG,EC 

[eV]
AnE-PVstat +0.24 +0.42 – 1.36 – 1.69 –5.24 –3.64 1.60

PBDB-T +0.33 +0.76 –1.32 –1.55 –5.33 –3.68 1.65
PCDTBT +0.14 +0.31 –1.47 –1.67 –5.14 –3.53 1.61
PC60BM +1.07 +1.23 –1.09 –1.28 –6.07 –3.91 2.16
PC70BM +1.00 +1.15 –1.09 –1.24 –6.00 –3.91 2.09

ITIC +0.69 +0.84 –1.03 –1.17 –5.69 –3.97 1.72
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Figure S11: Oxidation and reduction potentials of Pa2 determined by CV.
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Figure S12: Oxidation and reduction potentials of DaP2 determined by CV.
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Figure S13: Oxidation and reduction potentials of TaP2 determined by CV.

Table S2: HOMO-LUMO energy values determined by CV methods and calculated electrochemical 
bandgaps.

Material Oxidation

onset         peak

Reduction

onset        peak

HOMO 
(eV): 
onset

LUMO 
(eV): 
onset

Electrochemical 
bandgap EG,EC 

(eV)
Pa2 +1.08 +1.31 –1.08 –1.28 –6.08 –3.92 2.16

DaP2 +0.53 +0.65 –1.09 –1.26 –5.53 –3.91 1.62
TaP2 +0.43 +0.56 –1.11 –1.28 –5.43 –3.89  1.54
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4 Absorption (Abs.) and photoluminescence (PL) 

4.1 Normalized absorption and photoluminescence for AnE-PVstat, PC60BM and NFA’s

In this section, normalized absorption and photoluminescence spectra of all pristine and blend materials are 

depicted. Optical bandgap (Eg,opt) is calculated from the normalized cross-section of absorption and 

photoluminescence spectra, shown in the inset of the graphs, all the values are summarized in Tables S3 & 

S4. 
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Figure S14: Normalized absorption and photoluminescence spectra for pristine AnE-PVstat film.
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Figure S15: Normalized absorption and photoluminescence spectra for pristine PC60BM film.
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Figure S16: Normalized absorption and photoluminescence spectra for AnE-PVstat:PC60BM blend film.
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Figure S17: Normalized absorption and photoluminescence spectra for pristine ITIC film.
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Figure S18: Normalized absorption and photoluminescence spectra for AnE-PVstat:ITIC blend film.
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Figure S19: Normalized absorption and photoluminescence spectra for pristine Pa2 film.

300 400 500 600 700 800 900 1000
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Eg,opt = 1.59 eVEg,opt = 1.98 eV

AnE-PVstat:Pa2

N
or

m
. A

bs
or

pt
io

n,
 A

Wavelength [nm]

4 3.5 3 2.5 2 1.5

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
. P

ho
to

lu
m

in
es

ce
nc

e,
 P

L

Photon Energy, h [eV]

Figure S20: Normalized absorption and photoluminescence spectra for AnE-PVstat:Pa2 blend film.
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Figure S21: Normalized absorption and photoluminescence spectra for pristine DaP2 film.

300 400 500 600 700 800 900 1000
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
. A

bs
or

pt
io

n,
 A

Wavelength [nm]

4 3.5 3 2.5 2 1.5

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AnE-PVstat:DaP2

Eg,opt = 1.56 eV

N
or

m
. P

ho
to

lu
m

in
es

ce
nc

e,
 P

L

Photon Energy, h [eV]

Figure S22: Normalized absorption and photoluminescence spectra for AnE-PVstat:DaP2 blend film.
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Figure S23: Normalized absorption and photoluminescence spectra for pristine TaP2 film.
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Figure S24: Normalized absorption and photoluminescence spectra for AnE-PVstat:DaP2 blend film.
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Table S3: Optical bandgap determined from the absorption and photoluminescence.

Optical bandgap EG,O* (eV)
Material

Abs PL Abs/PL
AnE-Pvstat 2.03

PC60BM 1.68 1.76
ITIC 1.61
Pa2 2.03

DaP2 1.61
TaP2 1.48

AnE-PVstat:PC60BM 2.05
AnE-PVstat:ITIC 1.66
AnE-PVstat:Pa2 1.98 1.59

AnE-PVstat:DaP2 1.56
AnE-PVstat:TaP2 1.45

4.2 Norm. abs. and PL for PBDB-T, PBDB-T:PC70BM and PBDB-T:ITIC
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Figure S25: Normalized absorption and photoluminescence spectra for pristine PBDB-T film.
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Figure S26: Normalized absorption and photoluminescence spectra for PBDB-T:PC70BM blend film.
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Figure S27: Normalized absorption and photoluminescence spectra for PBDB-T:ITIC blend film.
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4.3 Norm. abs. and PL for PCDTBT, PCDTBT:PC70BM and PCDTBT:ITIC
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Figure S28: Normalized absorption and photoluminescence spectra for pristine PCDTBT film.
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Figure S29: Normalized absorption and photoluminescence spectra for PCDTBT:PC70BM blend film.
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Figure S30: Normalized absorption and photoluminescence spectra for PCDTBT:PC70BM blend film.

Table S4: Optical bandgap determined from the absorption and photoluminescence.

Optical bandgap EG,O* (eV)
Material

Abs PL Abs/PL
PBDB-T 1.87
PCDTBT 1.92

ITIC 1.61
PBDB-T: PC70BM 1.74

PBDB-T: ITIC 1.67
PCDTBT:PC70BM 1.81

PCDTBT:ITIC 1.67
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5 Energy resolved electrochemical impedance spectroscopy (ER-EIS)

In this section, density of states (DOS) functions of pristine NFA’s and AnE-PVstat:NFA’s are shown. 

All the NFA’s are investigated in two different substrates (glass/ITO and glass/ITO/ZnO), DOS for bare 

substrates are also shown in at first. 

5.1 Density of states for bare substrates 
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Figure S31: Density of state (DOS) functions of bare Glass/ITO and Glass/ITO/ZnO substrates.
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5.2 Density of states of pristine NFA’s 
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Figure S32: ER-EIS measurements of NFA’s. Density of state (DOS) functions of different non-fullerene 
acceptor films as measured by ER-EIS on glass/ITO substrates (left) and glass/ITO/ZnO substrates (right). 
Grey lines indicate the ER-EIS signals for the respective bare substrate. 
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5.3 Density of states of AnE-PVstat:NFA’s blends
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Figure S33: Detail analysis of HOMO-LUMO values for AnE-PVstat and AnE-PVstat:NFA’s blend.
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Figure S34: ER-EIS measurements for AnE-PVstat:PC60BM and AnE-PVstat:NFA’s. a) Density of state 
(DOS) functions of pristine AnE-PVstat and AnE-PVstat:PC60BM, AnE-PVstat:ITIC, AnE-PVstat:Pa2, 
AnE-PVstat:DaP2 and AnE-PVstat:TaP2 blends measured by ER-EIS.

5.4 Density of states of pristine PCBM
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Figure S35: ER-EIS measurements data for pristine PC60BM and PC70BM film casted from different 
solvents. 

From Figure S35 as well as Table S5 it is evident, that the solvent (system) from which the PCBM-film is 

cast largely impacts on the energy bandgap of the same.
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Table S5: HOMO and LUMO values obtained by ER-EIS on PC60BM and PC70BM, cast from different 
solvents.

Material Solvent HOMO LUMO Bandgap [eV]
PC60BM CB:CF 6.61 4.07 2.54
PC60BM CHCl3 (CF) 6.35 4.33 2.02
PC60BM CB 6.16 4.19 1.97
PC60BM DCB 5.99 4.27 1.72
PC70BM CB 6.29 4.41 1.88
PC70BM CB:CF 6.38 4.29 2.09
PC70BM m-Xylene 6.07 4.31 1.76

5.5 Energy landscape analysis: AnE-PVstat:NFAs (PDI based)

Energy landscape of AnE-PVstat:NFA’s (PDI based) and extracted charge transport gaps are shown in this 

section.  
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Figure S36: The evaluated energy landscape for AnE-PVstat, Pa2, and their blend.
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Figure S37: The evaluated energy landscape for AnE-PVstat, DaP2, and their blend.
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Figure S38: The evaluated energy landscape for AnE-PVstat, DaP2, and their blend.



29

Table S6: HOMO-LUMO values for pristine materials determined by ER-EIS method and calculated 
energy gaps (EG,DOS).

Materials HOMO (eV) LUMO (eV) Energy Gap 
EG,DOS (eV)

 AnE-PVstat –5.44 –3.06 2.38
PC60BM –6.55 –4.05 2.50

ITIC –5.63 –4.00 1.63
Pa2 –5.97 –4.20 1.77

DaP2 –5.54 –4.15 1.39
TaP2 –5.52 –4.18 1.34

AnE-PVstat:PC60BM –5.31 –4.19 1.12
AnE-PVstat:ITIC –5.44 –3.54 1.90
AnE-PVstat:Pa2 –5.31 –3.81 1.50

AnE-PVstat:DaP2 –5.36 –3.50 1.86
AnE-PVstat:DaP2 –5.33 –3.67 1.66
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5.6 Overview of DOS and open circuit voltage for indication of occupied states

The following graphs illustrate the resulting Fermi level splitting that have been overlaid in density of 

states diagram. 
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Figure S39: ER-EIS data on the density of (electronic) 
states (DOS), including the lower and upper limit of CT-state energy, shown by color marked boxes. a)  
AnE-PVstat:PC60BM, b) AnE-PVstat:ITIC, c) PBDB-T:PC70BM, d)PBDB-T:ITIC, e)PCDTBT:PC70BM 
and f) PCDTBT:ITIC. 

5.7 Arithmetic sum of single DOS and blend DOS

The following graphs illustrate the arithmetic sum of the individual DOS spectra that yields of blend. The 

arithmetic sum of DOS from pristine constituents nowhere co-insides with the bled DOS.  
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Figure S40: DOS of arithmetic of single materials (blue) and measured blend (brown) for a) AnE-
PVstat:PC60BM, b) AnE-PVstat:ITIC, c) PBDB-T:PC70BM, d) PBDB-T:ITIC, e) PCDTBT:PC70BM and f) 
PCDTBT:ITIC blends determined by ER-EIS measurements. 
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5.8 Joint density of states (jDOS) and EQE

  

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
10-7

10-6

10-5

10-4

10-3

10-2

10-1

R
el

at
iv

e 
EQ

E 
[1

]

Photon Energy, h[eV]

 Relative EQE [1]

-0.72eV

-0.44eV

-0.34eV

AnE-PVstat:PC60BM

10-11

10-10

10-9

10-8

10-7

10-6

10-5

 jDOS

jD
O

S

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
10-7

10-6

10-5

10-4

10-3

R
el

at
iv

e 
EQ

E 
[1

]

Photon Energy, h[eV]

 Relative EQE [1]

10-11

10-9

10-7

10-5

10-3

 jDOS

jD
O

S

+0.13eV

-1.22eV

-0.48eV

+0.44eV

AnE-PVstat:ITIC

  

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
10-7

10-6

10-5

10-4

10-3

10-2

10-1

R
el

at
iv

e 
EQ

E 
[1

]

Photon Energy, h[eV]

 Relative EQE [1]

10-11

10-10

10-9

10-8

10-7

10-6

10-5

 jDOS

jD
O

S

-0.51eV
-0.53eV

-0.46eV -0.21eV

PBDB-T:PC70BM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
10-7

10-6

10-5

10-4

10-3

10-2

10-1

R
el

at
iv

e 
EQ

E 
[1

]

Photon Energy, h[eV]

 Relative EQE [1]

10-11

10-10

10-9

10-8

10-7

10-6

10-5

 jDOS

jD
O

S

-1.08eV

-1.05eV

-1.08eV

-0.96eV

PBDB-T:ITIC

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
10-7

10-6

10-5

10-4

10-3

10-2

10-1

R
el

at
iv

e 
EQ

E 
[1

]

Photon Energy, h[eV]

 Relative EQE [1]

PCDTBT:PC70BM

10-11

10-10

10-9

10-8

10-7

10-6

10-5

 jDOS

jD
O

S

-0.65eV

-0.17eV

-0.43eV

-0.20eV

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
10-7

10-6

10-5

10-4

10-3

10-2

10-1

R
el

at
iv

e 
EQ

E 
[1

]

Photon Energy, h[eV]

 Relative EQE [1]

PCDTBT:ITIC

10-11

10-10

10-9

10-8

10-7

10-6

10-5

 jDOS jD
O

S

-0.99eV

-0.96eV

-0.77eV

Figure S 41: Determination of CT-state exciton binding energies from the difference between blend jDOS 
and its EQE onsets (in logarithmic scales) of the various donor acceptor bulk heterojunction blends.
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5.9 DOS energy gaps, electronic gap and consolidated CT-energy

For the electronic gaps the reader is referred to section 6.2.

Figure S42: Compilation of energy levels for pristine materials in comparison to energy levels relevant for 
donor-acceptor blends. For single materials in increasing order the optical gap, DOS energy gap, and the 
electronic gap from the jDOS are depicted. For resulting blends, the consolidated CT-energy is compared 
to the jDOS gap. Note that optical gaps, electronic gaps, and CT-energies are shown without limiting 
generality centrosymmetric to the absolute energy values of DOS energy gaps.
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5.10 Summary of HOMO and LUMO

Table S7: Highest occupied and lowest unoccupied molecular energy values for pristine and blend 
materials determined by ER-EIS method and calculated energy gaps; note that energy gaps for blends are 
so-called effective bandgaps, and may originate from an “effective semiconductor” based on HOMODonor 
and LUMOAcceptor, or from one of the constituents alone.

Materials HOMO 
[eV]

LUMO 
[eV]

DOS Energy gap 
EG,DOS [eV]

AnE-PVstat –5.44 –3.06 2.38
PBDB-T –5.35 –3.45 1.90
PCDTBT –5.49 –3.57 1.92
PC60BM –6.55 –4.05 2.50
PC70BM –6.33 –4.38 1.95

ITIC –5.63 –4.00 1.63
AnE-PVstat:PC60BM –5.31 –4.19 1.12

AnE-PVstat:ITIC –5.44 –3.54 1.90
PBDB-T:PC70BM –5.47 –4.21 1.26

PBDB-T:ITIC –5.31 –3.62 1.69 / 1.00 (FR)
PCDTBT:PC70BM –5.75 –4.21 1.54

PCDTBT:ITIC –5.51 –3.59 1.92 / 1.51 (FR)

Table S8: Analysis of effective bandgaps for photovoltaic blends, determined by ER-EIS method.

Materials Expected bandgap 
EG,EXP [eV]

Effective bandgap 
EG,EFF [eV]

ΔEG 
[meV]

Bandgap 
relation

Relative shift of 
effective bandgap

AnE-
PVstat:PC60BM

1.39 1.12 -270 EG,EXP > EG,EFF Shrinking

AnE-PVstat:ITIC 1.44 1.90 +460 EG,EXP < EG,EFF Widening
PBDB-T:PC70BM 0.97 1.26 +290 EG,EXP < EG,EFF Widening

PBDB-T:ITIC 1.35 1.69 / 
1.00 (FR)

+350 / 
-350

EG,EXP < EG,EFF
EG,EXP > EG,EFF

Widening / 
Shrinking

PCDTBT:PC70BM 1.11 1.54 +430 EG,EXP < EG,EFF Widening
PCDTBT:ITIC 1.49 1.92 / 

1.51 (FR)
+430 / 

+20
EG,EXP < EG,EFF
EG,EXP ~ EG,EFF

Widening /
Similar

Table S7 summarizes the ER-EIS-extracted molecular energy levels defining the energy gap of individual 

materials and blends thereof, Table S8 shows the analysis of the obtained effective bandgaps Eg,eff in 

comparison to the expected bandgaps Eg,exp. Note that in case of a Fano-resonance (FR) the character and 

energetics of the resulting effective bandgap may change in favor of photovoltaic operation.
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6 Work function measurements 

In order to obtain information about the work function of single and blend organic semiconductors in 

dependence on different types of metallic substrates, AnE-PVstat, in combination with PC70BM and 

various NFA’s spin coated films were measured by Kelvin Probe (KP) method on three different substrates. 

Work functions for bare substrates with native oxide layer were determined and the values are as follows: 

Glass/ITO (4.59 eV), glass/ITO/ZnO (4.53 eV) and glass/ITO/PEDOT:PSS (5.01 eV). The dotted lines 

indicate the work functions for bare substrates. It can be seen that, among all the acceptor materials, the 

work function of PC60BM follows the substrate work function also for ITO appropriately, but there are 

some major inconsistencies in the case of pristine NFAs except on glass/ITO/ZnO. Thus, Fermi level 

pinning does not show in all cases. 
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Figure S43: Work function of various materials on different substrate contacts. For comparison, the 
HOMO-LUMO values for the pristine AnE-PVstat, PC60BM and NFA’s determined by CV and ER-EIS are 
shown. 
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Figure S44: Work functions for various blends on different substrate contacts. HOMO-LUMO values for 
AnE-PVstat-based blends determined by ER-EIS and CV. 

6.1 Overview of electrochemical bandgap, optical bandgap and DOS energy gap

In this section an overview of electrochemical bandgap, optical bandgap and charge transport gap are 

presented. Electrochemical bandgaps are determined by CV measurement for all pristine materials. 

However, electrochemical bandgaps for blends are calculated from the difference between HOMO of the 

donor – LUMO of the acceptor, and that can be the upper limit of the open circuite voltage in the solar cell. 

Optical bandgaps are determined either from the inflection point of the absorption and/or 

photoluminescence, or from the corss section of both. Charge transport gaps are extrcated from the 

inflection point of the density of states measured by ER-EIS method. 
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Table S9: Evaluated electrochemical bandgap, optical bandgap and DOS energy gap of the pristine and 
blend materials.

Optical bandgap EG,O* (eV)
Material

CV: 
Electrochemical 

bandgap 
EG,EC (eV) 

ER-EIS:
DOS energy gap

EG,DOS (eV) Abs PL Abs/PL
AnE-Pvstat 1.60 2.38   2.03 

PC60BM 2.16 2.56  1.68  1.76  
ITIC 1.72 1.63    1.61
Pa2 2.16 1.77    2.03

DaP2 1.62 1.39    1.61
TaP2 1.54 1.34    1.48

AnE-PVstat:PC60BM 1.33 1.12    2.05
AnE-PVstat:ITIC  1.27 1.90    1.66
AnE-PVstat:Pa2  1.32 1.50 1.98  1.59  

AnE-PVstat:DaP2  1.33 1.86    1.56
AnE-PVstat:TaP2  1.35 1.66    1.45

Optical bandgap EG,O* (eV)
Material

CV: 
Electrochemical 

bandgap 
EG,EC (eV) 

ER-EIS:
DOS energy gap

EG,DOS (eV) Abs PL Abs/PL
PBDB-T 1.65 1.90    1.87
PCDTBT 1.61 1.92  1.92
PC70BM 2.09 1.95    -

ITIC 1.72 1.63   1.61
PBDB-T: PC70BM 1.42 1.26   1.74 

PBDB-T: ITIC 1.36 1.69    1.67
PCDTBT:PC70BM 1.23 1.54    1.81

PCDTBT:ITIC 1.17 1.92    1.67

6.2 Electronic bandgap from jDOS and optical bandgap 

For calculation of the electronic bandgap, the joint density of states (jDOS) was obtained from a convolution 

of the ER-EIS determined density of states (DOS) for each individual material. Finally, the onset of the 

jDOS was evaluated with a tangent construction, which corresponds then to the electronic gap. Because this 

method has been applied for the electronic gap, also the optical gap was determined in the same manner. 

Meaning, the onset of the optical absorption spectrum, derived from transmission and reflection 

measurements, was evaluated with a tangent construction at the absorption onset and yielded the optical 

bandgap. From these to bandgaps, the exciton binding energies are readily calculated as the difference 

between the optical gap and the electronic gap 2. The resulting values are summarized in Table S7.
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6.2.1 Electronic bandgap from joint density of states (jDOS) of pristine material

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0

1x10-5

2x10-5

3x10-5
jD

O
S

Energy, E [eV]

 AnE-PVstat
Fit result --> 2.60 eV

Figure S45: Joint density of states (jDOS) calculated by the convolution of ER-EIS data for AnE-PVstat.
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Figure S46: Joint density of states (jDOS) calculated by the convolution of ER-EIS data for PBDB-T.
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Figure S47: Joint density of states (jDOS) calculated by the convolution of ER-EIS data for PCDTBT.
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Figure S48: Joint density of states (jDOS) calculated by the convolution of ER-EIS data for PC60BM.
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Figure S49: Joint density of states (jDOS) calculated by the convolution of ER-EIS data for PC70BM. 
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Figure S50: Joint density of states (jDOS) calculated by the convolution of ER-EIS data for ITIC.
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6.2.2 Optical bandgap from absorption edge
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Figure S51: Optical band gap determined from the absorption onset for AnE-PVstat.
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Figure S52: Optical band gap determined from the absorption onset for PBDB-T. 
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Figure S53: Optical band gap determined from the absorption onset for PCDTBT.
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Figure S54: Optical band gap determined from the absorption onset for PC60BM.
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Figure S55: Optical band gap determined from the absorption onset for PC70BM.
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Figure S56: Optical band gap determined from the absorption onset for PC70BM.
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6.3 Exciton binding energy from optical and electronic bandgap

Table S10: Electronic gap determined from ER-EIS method, extracted optical bandgap from absorption 
edge and calculated exciton binding energy.

Materials Electronic gap 
[eV]

Optical 
bandgap

[eV]

Exciton binding energy 
EEB
[eV]

 AnE-PVstat 2.60 1.92 0.68
PBDB-T 2.12 1.77 0.35
PCDTBT 2.11 1.87 0.24
PC60BM 2.94 2.00 0.94
PC70BM 2.50 1.68 0.82

ITIC 1.72 1.44 0.28

6.4 Electronic bandgap from joint density of states (jDOS) of blends
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Figure S57: Joint density of states (jDOS) calculated by the convolution of ER-EIS data for AnE-
PVstat:PC60BM blends.
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Figure S58: Joint density of states (jDOS) calculated by the convolution of ER-EIS data for AnE-
PVstat:ITIC blends.
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Figure S59:  Joint density of states (jDOS) calculated by the convolution of ER-EIS data for PBDB-
T:PC60BM blends.
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Figure S60: Joint density of states (jDOS) calculated by the convolution of ER-EIS data for PBDB-T:ITIC 
blends.
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Figure S61: Joint density of states (jDOS) calculated by the convolution of ER-EIS data for 
PCDTBT:PC60BM blends.
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Figure S62:  Joint density of states (jDOS) calculated by the convolution of ER-EIS data for PCDTBT:ITIC 
blends.

Table S11: Electronic gap of the blends determined from ER-EIS method

Materials Electronic gap 
[eV]

AnE-PVstat:PC60BM 1.37
AnE-PVstat:ITIC 2.29
PBDB-T:PC70BM 2.21

PBDB-T:ITIC 1.97 & 1.00 (FR)
PCDTBT:PC70BM 2.16
PCDTBTT:ITIC 2.07 & 1.45 (FR)
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7 CT-state energy

CTE-EL and PL spectra were taken as is and a multiple peak fit was performed by applying the least 

possible number of Voigt functions (convolution of Gaussian and Lorentzian line shape functions) to 

simulate the experimental spectra. Fittings were done with Peak Analysis Pro in Origin Pro. Subsequently, 

transitions of polymer, acceptor and CTE were localized by comparing them with the EL/PL spectra of the 

pristine materials.

7.1 CTE-EL and DOS energy gap
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Figure S63: CTE-EL energy and DOS energy gap for PBDB-T:ITIC.
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Figure S64: CTE-EL energy and DOS energy gap for PCDTBT:ITIC.

7.2 CTE-PL and transport gap
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Figure S65: CTE-PL energy and DOS energy gap for PBDB-T:PC70BM.
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Figure S66: CTE-PL energy and DOS energy gap for PCDTBT:ITIC.
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Figure S67: CTE-PL energy and DOS energy gap for PCDTBT:PC70BM.
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8 CTE-PL and transport gap for AnE-PVstat:NFAs (PDI based)
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Figure S68: CTE-PL energy and DOS energy gap for AnE-PVstat:Pa2.
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Figure S69: CTE-PL energy and DOS energy gap for AnE-PVstat:DaP2.
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Figure S70: CTE-PL energy and DOS energy gap for AnE-PVstat:TaP2.

Table S12: CT-energy extracted form PL and EL measurements.

Materials Measurement method CTE 1 
[eV]

CTE 2 
[eV]

CTE 3 
[eV]

CTE 4 
[eV]

PBDB-T:ITIC EL 1.55 1.39 1.28 1.22
PCDTBT:ITIC EL 1.61 1.46 1.32 --

PBDB-T:PC70BM PL -- 1.72 1.49 1.33
PCDTBT:ITIC PL 1.61 1.46 1.31 1.11

PCDTBT:PC70BM PL 1.96 1.74 1.49 1.12
AnE-PVstat:Pa2 PL 1.53 1.44 1.32 1.23

AnE-PVstat:DaP2 PL 1.48 1.41 1.32 1.24
AnE-PVstat:TaP2 PL 1.44 1.36 1.29 1.22
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9 Determination of sub-bandgap EQE

Table S13: Overview of ECTE of sub-bandgap EQE CTE transition or Urbach energies EU, with confidence 
intervals of one standard deviation.

Photovoltaic blends CTE-Subgap 
EQE

ECTE-EQE [eV] Exponential 
Urbach Tail

Urbach Energy 
[meV]

AnE-PVstat:PC60BM  ✔ 1.51
AnE-PVstat:ITIC - ✔ 32.4
PBDB-T:PC70BM ✔ 1.42

PBDB-T:ITIC - ✔ 28.3
PCDTBT:PC70BM  ✔ 1.48

PCDTBT:ITIC  - ✔ 33.5

Table S14: Overview of ECTE of sub-bandgap EQE CTE transition or Urbach energies EU, with confidence 
intervals of one standard deviation. ECTE  values in brackets were determined from an alternative linear 
regression recently published by Tvingstedt et al.   

Photovoltaic blends CTE-Subgap 
EQE

ECTE-EQE [eV] Exponential 
Urbach Tail

Urbach Energy 
[meV]

AnE-
PVstat:PC60BM

 ✔ 1.51
(1.53 +/- 0.09)

AnE-PVstat:ITIC - ✔ 32.4
32.4 +/- 0.5

PBDB-T:PC70BM ✔ 1.42
(1.45 +/- 0.07)

PBDB-T:ITIC - ✔ 28.3
28.35 +/- 0.24

PCDTBT:PC70BM  ✔ 1.48
(1.49 +/- 0.11)

PCDTBT:ITIC  - ✔ 33.5
33.5+/-0.7

The fitting routines CT Energy fitting from photovoltaic subgap EQE

Method 1 (original): 

 Nonlinear least-square fitting of a reduced Gaussian distribution to the CT part of the subgap EQE 
spectrum

 Levenberg-Marquard algorithm
 Fit limits and starting values chosen “by hand”

 Fitting equation:
𝐸𝑄𝐸𝑃𝑉,𝐶𝑇 =

𝐴

𝐸 4𝜋𝜆𝑘𝐵𝑇
exp ( ‒

(𝐸𝐶𝑇 + 𝜆 ‒ 𝐸)2

4𝜆𝑘𝐵𝑇 )
 Amplitude , Energy , Reorganisation Energy , CT Energy , thermal Energy 𝐴 𝐸 𝜆 𝐸𝐶𝑇 𝑘𝐵𝑇

 Pros: direct model-to-data fit
 Cons: We cannot determine a fitting error, as numerical methods for their determination only 

apply for functions with linear fitting coefficients. For a non-linear, reduced Gaussian function, 
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they are not reliable -> so, don’t believe the errors for method 1, they are probably much higher in 
reality.

Method 2:

 Numerical recalculation of the subgap EQE spectrum, so that the Gaussian distribution resolves 
into a straight line



𝑑
𝑑𝐸

ln (𝐸𝑄𝐸𝑃𝑉(𝐸) × 𝐸) =
𝐸𝐶𝑇 + 𝜆

2𝜆𝑘𝐵𝑇
‒

𝐸
2𝜆𝑘𝐵𝑇

= 𝐵 ‒ 𝐶 × 𝐸

 This line is then fitted by linear regression (which is the mathematically sound method).

  is extracted from , and  from 𝜆 𝐶 𝐸𝐶𝑇

𝐵
𝐶

‒ 𝜆

 Pros: it is much easier to fit a line (set the correct fitting range etc.), we get good estimates for the 
parameter range (errors), which can further be transformed to parameters errors for  and 𝜆 𝐸𝐶𝑇

 Cons: requires numerical deviation, which may be influenced by noise (so pre-averaging may be 
required)

Urbach Energy and Gap Fitting from subgap EQE spectra

 Fit of a straight line to  in the exponential tail region, and average value of the ln (𝐸𝑄𝐸𝑃𝑉(𝐸,𝑇))
“pre-gap” plateau (to determine cross-point with exponential tail)

Table S15: Overview of ECTE of sub-bandgap EQE CTE and reorganization energies evaluated by two 
different methods. 

PBDB-T:PC70BM AnE-PVstat:PC60BM PCDTBT:PC70BM

Method 1 Method 2 Method 1 Method 2 Method 1 Method 2

𝐸𝐶𝑇 1.423 eV +/- 
15 meV

1.45 eV +/- 
70 meV

1.508 eV +/- 
5 meV

1.53 +/- 90 
meV

1.481 +/- 6 
meV

1.49 eV +/- 
110 meV

𝜆𝐶𝑇 480 +/- 60 
meV

390 +/- 15 
meV

220 +/- 40 
meV

288 +/- 13 
meV

332 +/- 30 
meV

303 +/- 16 
meV

AnE-PVstat:ITIC PCDTBT:ITIC PBDB-T:ITIC

𝐸𝑈 32.4 +/- 0.5 meV 33.5 +/- 0.7 meV 28.35 +/- 0.24 meV

𝐸𝑔𝑎𝑝 1.67 eV +/- 50 meV 1.67 eV +/- 60 meV 1.662 +/- 27 meV
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10 Electron spin resonance

In this section, electron spin resonance (ESR) signals for AnE-PVstat, PC60BM and ITIC as single species 

in frozen solutions and in films are shown. 

3380 3390 3400 3410
H / 10-4T

Frozen solution
 Dark
 Xe-lamp g0P =2.003

Solid film
 Dark
 Xe-lamp

AnE-PVstat

Figure S71: X-band LESR spectra of pristine AnE-PVstat in the frozen liquid solution, and solid film 
state recorded at 77 K temperature.

3395 3400 3405
H / 10-4T

Frozen solution
 Dark
 Xe-lamp

Solid film
 Dark
 Xe-lamp

PC60BM

Figure S72: X-band LESR spectra of pristine PC60BM in the frozen liquid solution, and solid film state 
recorded at 77 K temperature.
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3380 3390 3400 3410
H / 10-4T

Frozen solution
 Dark
 Xe-lamp

Solid film
 Dark
 Xe-lamp

ITIC

Figure S73: X-band LESR spectra of pristine ITIC in the frozen liquid solution, and solid film state 
recorded at 77K temperature.
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11 Transient absorption
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Figure S74: Ps-ns TA spectra of AnE-PVstat:ITIC (1.29 µJ/cm2) after excitation wavelength at 700 nm 
(short delay). Right: Charge carrier dynamics probed in the spectral window of 2.05-2.37 eV.
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Figure S75: The comparison of the TA signal at 5 ns to the TA signal at 500 fs. Fast decay of the excited 
states leads to significant geminate recombination in the AnE-PVstat:ITIC blends.
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12 Jablonski diagram
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Figure S76: Jablonski diagram of occupied states and observed transitions detected by ODMR in the blend 
systems of a) AnE-PVstat:PC60BM and b) AnE-PVstat:ITIC. Occupied states and possible transitions are 
represented by solid lines and arrows, while improbable ones are represented by dotted lines and arrows, 
respectively. The intended steps to the generation to free charge carriers are first charge transfer from 
acceptor or donor to an interfacial CT state, followed by potentially thermally activated (kBT) charge 
separation (blue).  
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13 Density functional theory (DFT)

LUMO

ELUMO = −3.37 eV

HOMO

EHOMO = −5.48 eV

Figure S77: Frontier molecular orbitals of ITIC displayed as isosurface for |ψMO|=0.02 with their energies 
as calculated by DFT using the hybrid functional B3LYP and the Gaussian basis-set 6-311G**.
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LUMO

ELUMO = −2.72 eV

HOMO

EHOMO = −4.46 eV

Figure S78: Frontier molecular orbitals of the model PV-AnE-PV oligomer displayed as isosurface for 
|ψMO|=0.02 with their energies as calculated by DFT using the hybrid functional B3LYP and the 
Gaussian basis-set 6-311G(2d,p).
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14 Infrared transition moment orientational analysis

14.1 Experimental

FTIR spectra were recorded in transmission mode with a spectral resolution of 2 cm-1 by means of a Bio-

Rad FTS 6000 FTIR spectrometer equipped with an UMA-500 infrared microscope and a liquid nitrogen-

cooled Mercury Cadmium Telluride (MCT) detector (Kolmar Technologies). Sample films were prepared 

by spin coating on an IR-transparent barium fluoride substrate, for pristine materials 3.6 wt.-% material was 

dissolved in chlorobenzene (CB) and spin casted with 800 rpm spin frequency. In case of blend, 

donor:acceptor ratio was 1:1, yielded final concentration of 1.8 wt.-% of each component in the blend.  

In order to examine IR-TMOA measurements, the collimated IR beam was transmitted through the sample 

film while a set of different polarizer positions  was scanned and a home built tilting device kept the film 

fixed at a constant inclination  (Figure S77). After one set of polarization angles was scanned through at 

one fixed inclination the sample was tilted further to the next inclination angle, affecting the projection of 

the transition dipole moment onto the plane of polarization. Due to systematically scanning the IR 

absorption depending on the polarization and inclination, the tensor of absorption can be evaluated in 3-

dimensional space and the principal axes and principal values of absorption can be determined. A 

representative sketch of the measurement geometry is provided in Figure S77. A detailed description and 

applications can be found in the literature3-6.

In the case of the examined samples it appeared that all studied transition moments (TMs) are rotationally 

symmetric distributed with respect to the film normal (z-axis). In this case we can simplify the analysis. 

One principal axis of absorption is identical with the z-axis, whereas the remaining other two principal axes 

(x and y axes) are parallel to the film. Hereafter we denote the principal value of absorption parallel to the 

film normal and parallel to the film plane as  ( ) and  ( , respectively. Because 𝐴⏊ = 𝐴𝑧 𝐴‖ = 1 2 ∙ (𝐴𝑥 + 𝐴𝑦)

of the rotational symmetry, the TMs can be modeled as equally distributed on the surface of a cone centered 

at the z-axis and exhibiting an opening angle , given by

.
cos Θ =

𝐴⏊

𝐴⏊ + 2𝐴‖
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Figure S79: (a) Measurement geometry of an IR-TMOA experiment. The sample film supported though a 
BaF2 substrate is inclined at an angle  while at the same time the polarization dependence of the projection 
of the transition dipole moments onto the plane of polarization () is measured. Because the sample-fixed 
coordinate system (x,y,z) is tilted relative to the laboratory frame (x’,y’,z’), the transition dipole moment 
tensor can be determined for different molecular moieties in 3-dimensional space . (b) As a consequence of 
symmetry, the IR-active transition moments (TMs) can be modeled as equally distributed on the surface of 
a cone with an opening angle  centered along the z-axis.

As a consequence of the small film thickness, spectral distortion from atmospheric water and interference 

effects from parallel surfaces are more pronounced than for thicker films. Thus, adequate filtering was 

necessary (Figure S78 a). Because the spectral region of the C=O stretching vibration (Figure S78 c) is 

overlapping with the region where atmospheric water is absorbing, removing of the water spikes and 

filtering was necessary. In contrast, C≡N stretching absorbs at higher wavenumbers where interference from 

parallel surfaces is less pronounced and no interfering from atmospheric water occurs. Thus, the raw data 

could be used for analyzing this spectral region.
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Figure S80: (a) Infrared spectra of AnE-PVstat:ITIC at normal incidence ( = 0°,  = 0°). (b) The C≡N 
stretching vibration is not affected by absorption of atmospheric water or interference from parallel 
surfaces, and thus the raw data can be used. (c) The region of C=O stretching absorption overlaps with 
that of absorption of atmospheric water, which is why filtering was applied (Savitzky-Golay: polynomial of 
degree three, windows of 11 points). Only where necessary corrected data is used for analysis; otherwise 
raw data is employed.

14.1.1 CN stretching

In the spectra of samples containing ITIC a narrow absorption band is visible at around 2220 cm-1, which 

arises from the absorption of the symmetric and antisymmetric C≡N stretching mode7. Simulations (ORCA 

program package8-9, B3LYP functional, 6-31G(2d2p) basis set10-19) predict that the high frequency peak (

) contributing to this band arises from the symmetric C≡N stretching vibration s(C≡N), 𝜈 = 2218 𝑐𝑚 ‒ 1

whereas the low-frequency peak ( ) is caused by the antisymmetric stretching mode 𝜈 = 2208 𝑐𝑚 ‒ 1

as(C≡N) (Figure S79). The shoulder at the low-frequency side is probably resulting from a combination 

of conjugated CC stretching vibrations from aromatic rings7.
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Figure S81: The C≡N stretching band at different inclination angles ( = 60°, 30°, and 0°) and polarization 
angles ( = 0°: s-polarization;  = 90°: p-polarization) along with the individual peaks (modeled as 
Gaussians) contributing to this band.

Figure S82: Inclination and polarization-dependent absorption of the symmetric C≡N stretching mode 
(s(C≡N), , orange squares) and the absorption of the fitted model distribution of TMs (red 𝜈 = 2218 𝑐𝑚 ‒ 1

line).

Table S16: Parameters extracted from IR-TMAO for s(C≡N) and the derived inclination of the TMs. The 
wavenumber-specific refractive index of the BaF2 substrate is assumed as n = 1.47 according to Querry20. 
The inclination is accurate up to ±3°.

Principal value of absorption
𝐴𝑥 0.09 ± 0.01
𝐴𝑦 0.08 ± 0.01
𝐴𝑧 0.03 ± 0.01

𝐴‖ 0.08 ± 0.01
𝐴⏊ 0.03 ± 0.01

Inclination of TMs


75°
(73° - 78°)
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Figure S83: Inclination and polarization-dependent absorption of the antisymmetric C≡N stretching mode 
(as(C≡N), , red squares) and the absorption of the fitted model distribution of TMs (green 𝜈 = 2208 𝑐𝑚 ‒ 1

line).

Table S17: Parameter extracted from IR-TMAO for as(C≡N) and the derived inclination of the TMs. The 
wavenumber-specific refractive index of the BaF2 substrate is assumed as n = 1.47 according to Querry20. 
The inclination is accurate up to ±3°.

Principal value of 
absorption

𝐴𝑥 0.03 ± 0.01
𝐴𝑦 0.03 ± 0.01
𝐴𝑧 0.01 ± 0.01

𝐴‖ 0.03 ± 0.01
𝐴⏊ 0.01 ± 0.01

Inclination of TMs


90°

14.1.2 CO stretching

In the IR spectra, a narrow peak is evident at  which arises from the absorption of the C=O 𝜈̅ = 1702 𝑐𝑚 ‒ 1

group in ITIC (Figure S78). It is modeled with a single pseudo-Voigt function; a slightly asymmetric 

Gaussian is employed as auxiliary peak (Figure S82). Referred to the literature, peaks originating from 

C=O stretching are generally narrow, even when the C=O group is incorporated into hydrogen bonding. 

Thus, we exclude C=O stretching as the origin of the broad auxiliary peak.
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Figure S84: The C=O stretching band at different inclination angles ( = 60°, 30°, and 0°) and 
polarization angles ( = 0°: s-polarization;  = 90°: p-polarization) along with the individual peaks 
contributing to this band. Peaks modeled as a pseudo-Voigt or a slightly asymmetric Gaussian.

Figure S85: Inclination and polarization-dependent absorption of the C=O stretching mode ((C=O), 
, green squares) and the absorption of the fitted model distribution of TMs (red line).𝜈 = 1702 𝑐𝑚 ‒ 1

Table S18: Parameters extracted from IR-TMAO for (C=O) and the derived inclination of the TMs. The 
wavenumber-specific refractive index of the BaF2 substrate is assumed as n = 1.46 according to Querry20. 
The inclination is accurate up to ±3°.

Principal value of 
absorption

𝐴𝑥 0.21 ± 0.01
𝐴𝑦 0.21 ± 0.01
𝐴𝑧 0.04 ± 0.01

𝐴‖ 0.21 ± 0.01
𝐴⏊ 0.04 ± 0.01

Inclination of TMs


83°
(80° – 86°)
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14.1.3 Ring stretching

When comparing spectra of AnE-PVstat:ITIC with that of PBDB-T:ITIC we noticed a signal at around 

 and  arising solely from AnE-PVstat. (Figure S84 a and Figure S86 a). Simulations 𝜈̅ ≈ 1500 1200 𝑐𝑚 ‒ 1

(ORCA program package8-9, B3LYP functional, 6-31G(2d,2p) basis set10-19) predict that these peaks 

originate from C-O-C stretching and ring bending modes in the direction along the 1-4-positions at the 1,4-

bis(octyloxy)benzene. In addition, these peaks correlate with the absorption of 1,4-di(methoxy)benzene21. 

Figure S86: (a) Spectra of AnE-PVstat:ITIC and PBDB-T:ITIC ( = 0°,  = 0°) scaled accordingly in 
order to assign the peaks at  as arising from AnE-PVstat. (b) Fit as a sum of Gaussians.𝜈̅ = 1503 𝑐𝑚 ‒ 1

Figure S87: Inclination and polarization-dependent absorption of the ring stretching mode (
, olive squares) and the absorption of the fitted model distribution of TMs (red line).𝜈 = 1503 𝑐𝑚 ‒ 1
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Table S19: Parameters extracted from IR-TMAO for the ring stretching mode at  and the 𝜈 = 1503 𝑐𝑚 ‒ 1

derived inclination of the TMs. The wavenumber-specific refractive index of the BaF2 substrate is assumed 
as n = 1.45 according to Querry20. The inclination is accurate up to ±5°.

Principal value of 
absorption

𝐴𝑥 0.21 ± 0.01
𝐴𝑦 0.19 ± 0.01
𝐴𝑧 0.01 ± 0.02

𝐴‖ 0.20 ± 0.01
𝐴⏊ 0.01 ± 0.02

Inclination of TMs 


87°

Figure S88: (a) Spectra of AnE-PVstat:ITIC and PBDB-T:ITIC ( = 0°,  = 0°) scaled accordingly in 
order to assign peaks at around  as arising from AnE-PVstat. (b) Fit as a sum of Gaussians.𝜈̅ ≈ 1200 𝑐𝑚 ‒ 1

Figure S89: Inclination and polarization-dependent absorption of the ring stretching mode 
( , dark cyan squares) and the absorption of the fitted model distribution of TMs (red line).𝜈 = 1184 𝑐𝑚 ‒ 1



70

Table S20: Parameters extracted from IR-TMAO for the ring stretching mode at  and the 𝜈 = 1184 𝑐𝑚 ‒ 1

derived inclination of the TMs. The wavenumber-specific refractive index of the BaF2 substrate is assumed 
as n = 1.44 according to Querry20. The inclination is accurate up to ±5°.

Principal value of 
absorption

𝐴𝑥 0.06 ± 0.01
𝐴𝑦 0.04 ± 0.01
𝐴𝑧 0.01 ± 0.01

𝐴‖ 0.05 ± 0.01
𝐴⏊ 0.01 ± 0.01

Inclination of TMs 


90°

Figure S90: Inclination and polarization-dependent absorption of the ring stretching mode (
, dark cyan squares) and the absorption of the fitted model distribution of TMs (red line).𝜈 = 1204 𝑐𝑚 ‒ 1

Table S21: Parameters extracted from IR-TMAO for the ring stretching mode at  and the 𝜈 = 1204 𝑐𝑚 ‒ 1

derived inclination of the TMs. The wavenumber-specific refractive index of the BaF2 substrate is assumed 
as n = 1.44 according to Querry20. The inclination is accurate up to ±5°.

Principal value of 
absorption

𝐴𝑥 0.63 ± 0.01
𝐴𝑦 0.59 ± 0.01
𝐴𝑧 0.06 ± 0.04

𝐴‖ 0.61 ± 0.01
𝐴⏊ 0.06 ± 0.01

Inclination of TMs 


86°
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As a consequence of the greater integrated absorbance of the peak at  compared to the peak 𝜈 = 1204 𝑐𝑚 ‒ 1

at , we assess the inclination of the TMs determined on the basis of the first vibration as 𝜈 = 1184 𝑐𝑚 ‒ 1

more trustworthy than the inclination determined in the basis of the second vibration.

14.1.4 Anthracene deformation

When comparing spectra of AnE-PVstat:ITIC with that of PBDB-T:ITIC we noticed a signal at 

 arising solely from AnE-PVstat (Figure S89a). Simulations (ORCA program package8-9, 𝜈̅ = 1423 𝑐𝑚 ‒ 1

B3LYP functional, 6-31G(2d,2p) basis set10-19) predict that this peak originates from anthracene 

deformation. The TM of this vibration is oriented parallel to the anthracene plane and perpendicular to the 

polymer backbone22-23. In addition, these peaks correlate with the absorption of 9,10-dimethylanthracene 

and 9,10-bis(phenylmethyl)-anthracene24-25.

Figure S91: (a) IR spectra of AnE-PVstat:ITIC and PBDB-T:ITIC ( = 0°,  = 0°) scaled accordingly in 
order to assign the peak at  as arising from AnE-PVstat. (b) Fit as a sum of Gaussians.𝜈̅ = 1423 𝑐𝑚 ‒ 1

Figure S92: Inclination and polarization-dependent absorption of the anthracene stretching mode (
, dark blue squares) and the absorption of the fitted model distribution of TMs (red line).𝜈 = 1423 𝑐𝑚 ‒ 1
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Table S22: Parameters extracted from IR-TMAO for the ring stretching mode at  and the 𝜈 = 1423 𝑐𝑚 ‒ 1

derived inclination of the TMs. The wavenumber-specific refractive index of the BaF2 substrate is assumed 
as n = 1.45 according to Querry20. The inclination is accurate up to ±5°.

Principal value of 
absorption

𝐴𝑥 0.06 ± 0.01
𝐴𝑦 0.05 ± 0.01
𝐴𝑧 0.03 ± 0.01

𝐴‖ 0.05 ± 0.01
𝐴⏊ 0.03 ± 0.01

Inclination of 
TMs 

71°

We would like to bring to the readers’ notice that the angle of inclination of a particular TM represents an 

averaged value over all molecules exhibiting the vibrational mode according to the TM. Because there is 

only one anthracene part within one repeat unit, the angle of inclination describes the tilt of the anthracene 

part. In contrast, there are three 1,4-disubstituted benzene rings within one repeat unit, and thus this angle 

of inclination represents an average value over all three rings. Therefore, a potential tilt between the rings 

can easily induce a difference between the inclination of the anthracene part and the averaged inclination 

of the benzene rings. Because of this fact we focus on the anthracene vibration at  for 𝜈̅ = 1423 𝑐𝑚 ‒ 1

discussing a potential alignment (cf. 13.4 Discussion and Summary).

In order to determine the inclination of the anthracene moiety in the direction along the polymer backbone, 

we are seeking for a vibrational mode with a TM parallel to the backbone. However, an absorption band of 

such a mode cannot be isolated within the IR spectrum, because of the similarity of the different materials 

of the blend. Instead, we make use of a combined deformation of the anthracene part and adjacent benzene 

rings (simulation: ORCA program package8-9, B3LYP functional, 6-31G(2d,2p) basis set10-19) giving rise 

to an absorption band at around  (Figure S91 a). The TM of this mode is oriented parallel 𝜈̅ ≈ 1030 𝑐𝑚 ‒ 1

to the polymer backbone. IR-TMOA reveals that all 3 peaks contributing to this band are oriented parallel 

to the film plane ( = 90°, Table S21).
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Figure S93: (a) IR spectra of of AnE-PVstat:ITIC and PBDB-T:ITIC ( = 0°,  = 0°) scaled accordingly 
in order to assign the band at around  as arising from AnE-PVstat. (b) Fit of this band as 𝜈̅ ≈ 1030 𝑐𝑚 ‒ 1

a sum of Gaussians.

Figure S94: Inclination and polarization-dependent absorption (sum of the three peaks) of the anthracene 
and benzene deformation band ( , brown squares) and the absorption of the fitted model 𝜈 ≈ 1030 𝑐𝑚 ‒ 1

distribution of TMs (green line).

Table S23: Parameters extracted from IR-TMAO for the deformation vibrations at around 
 and the derived inclinations of the TMs. The wavenumber-specific refractive index of the 𝜈 ≈ 1030 𝑐𝑚 ‒ 1

BaF2 substrate is assumed as n = 1.43 according to Querry20 . The inclination is accurate up to ±5°.

Principal value of 
absorption

𝜈̅ = 1019 𝑐𝑚 ‒ 1 𝜈̅ = 1031 𝑐𝑚 ‒ 1 𝜈̅ = 1044 𝑐𝑚 ‒ 1

𝐴𝑥 0.03 ± 0.01 0.14 ± 0.01 0.04 ± 0.01
𝐴𝑦 0.03 ± 0.01 0.14 ± 0.01 0.05 ± 0.01
𝐴𝑧 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01

𝐴‖ 0.03 ± 0.01 0.14 ± 0.01 0.04 ± 0.01
𝐴⏊ 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01

Inclination of TMs 


90° 90° 90°
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14.2 PBDB-T:ITIC
Similar to the case of AnEPVstat:ITIC, the spectra of PBDB-T:ITIC have to be corrected for interference 

caused by parallel surfaces and absorption from atmospheric water (Figure S93). Only where necessary 

corrected data is used for analysis; otherwise raw data is employed.

Figure S95: Infrared spectra of PBDB-T:ITIC at normal incidence ( = 0°,  = 0°). Because of the small 
film thickness, interference effects appear in the raw data (Savitzky-Golay: polynomial of degree three, 
windows of 11 points).

CN stretching

Similar to the case of AnE-PVstat:ITIC a narrow absorption band at around 2220 cm-1 is visible for PBDB-

T:ITIC. It arises from the absorption of the symmetric and antisymmetric C≡N stretching mode7 at 

 (s(C≡N)) and  (as(C≡N)), respectively (Figure S94). The shoulder at the 𝜈 = 2218 𝑐𝑚 ‒ 1 𝜈 = 2212 𝑐𝑚 ‒ 1

low-frequency side is probably resulting from combination of conjugated CC stretching vibrations from 

aromatic rings7.



75

Figure S96: The C≡N stretching band at different inclination angles ( = 60°, 30°, and 0°) and polarization 
angles ( = 0°: s-polarization ;  = 90°: p-polarization) along with the individual peaks (modeled as 
Gaussians) contributing to this band.

Figure S97: Inclination and polarization-dependent absorption of the symmetric C≡N stretching mode 
(s(C≡N), , orange squares) and the absorption of the fitted model distribution of TMs (red 𝜈 = 2218 𝑐𝑚 ‒ 1

line). 

Table S24: Parameters extracted from IR-TMAO for s(C≡N) and the derived inclination of the TMs. The 
wavenumber-specific refractive index of the BaF2 substrate is assumed as n = 1.47 according to Querry20. 
The inclination is accurate up to ±3°.

Principal value of 
absorption

𝐴𝑥 0.09 ± 0.01
𝐴𝑦 0.09 ± 0.01
𝐴𝑧 0.03 ± 0.01

𝐴‖ 0.09 ± 0.01
𝐴⏊ 0.03 ± 0.01

Inclination of TMs 


78°
(76° - 80°)
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Figure S98: Inclination and polarization-dependent absorption of the antisymmetric C≡N stretching mode 
(as(C≡N), , orange squares) and the absorption of the fitted model distribution of TMs (red 𝜈 = 2212 𝑐𝑚 ‒ 1

line).

Table S25: Parameters extracted from IR-TMAO for as(C≡N) and the derived inclination of the TMs. 
The wavenumber-specific refractive index of the BaF2 substrate is assumed as n = 1.47 according to 
Querry20. The inclination is accurate up to ±3°.

Principal value of 
absorption

𝐴𝑥 0.11 ± 0.01
𝐴𝑦 0.10 ± 0.01
𝐴𝑧 0.01 ± 0.06

𝐴‖ 0.11 ± 0.01
𝐴⏊ 0.01 ± 0.05

Inclination of TMs 


90°

14.2.1 CO stretching

In the IR spectra of PBDB-T:ITIC two narrow peaks are evident at  and  𝜈̅ = 1703 1648 𝑐𝑚 ‒ 1

(Figure S93), which originate from the absorption of the C=O group in ITIC and PBDB-T, respectively7. 

They are modeled through pseudo-Voigt functions and a slightly asymmetric Gaussian as an auxiliary peak 

(Figure S97, compare with Figure S82).
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Figure S99: The C=O stretching bands at different inclination angles ( = 60°, 30°, and 0°) and 
polarization angles ( = 0°: s-polarization; = 90°: p-polarization) along with the individual peaks 
(modeled as pseudo-Voigt profiles, PsdVoigt) contributing to both bands.

Figure S100: Inclination and polarization-dependent absorption of the C=O stretching mode ((C=O), 
, green squares) in ITIC along with the absorption of the fitted model distribution of TMs 𝜈 = 1703 𝑐𝑚 ‒ 1

(red line).

Table S26: Parameters extracted from IR-TMAO for (C=O) in ITIC and the derived inclination of the 
TMs. The wavenumber-specific refractive index of the BaF2 substrate is assumed as n = 1.46 according to 
Querry20. The inclination is accurate up to ±3°.

Principal value of 
absorption

𝐴𝑥 0.28 ± 0.01
𝐴𝑦 0.27 ± 0.01
𝐴𝑧 0.01 ± 0.02

𝐴‖ 0.28 ± 0.01
𝐴⏊ 0.01 ± 0.02

Inclination of TMs 


90°
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Figure S101: Inclination and polarization-dependent absorption of the C=O stretching mode ((C=O), 
, blue squares) in PBDB-T along with the absorption of the fitted model distribution of TMs 𝜈 = 1648 𝑐𝑚 ‒ 1

(red line).

Table S27: Parameters extracted from IR-TMAO for (C=O) in PBDB-T and the derived inclination of the 
TMs. The wavenumber-specific refractive index of the BaF2 substrate is assumed as n = 1.46 according to 
Querry20. The inclination is accurate up to ±3°.

Principal value of 
absorption

𝐴𝑥 0.29 ± 0.01
𝐴𝑦 0.28 ± 0.01
𝐴𝑧 0.01 ± 0.03

𝐴‖ 0.29 ± 0.01
𝐴⏊ 0.01 ± 0.03

Inclination of TMs 


90°

14.3 Discussion and summary
In order to calculate the inclination of the indanone plane its molecular structure has been simulated by 

means of the ORCA program package with B3LYP functional and 6-31G(2d,2p) basis set 

(Figure S 97 a)8-19. First, we defined vector 1 ( ) as a unit vector parallel to the TM of s(C≡N) and 𝑣1

vector 2 ( )as a unit vector parallel to the TM of (C=O). The direction of  is given through the sum of 𝑣2 𝑣1

the two vectors connecting atoms 21 with 23 and 22 with 24 (angle bisector of the C≡N bonds), whereas 

the direction of  is given through the vector connecting atoms 11 and 15 (C=O bond). On the basis of the 𝑣2

scalar product of  and ,𝑣1 𝑣2

𝑣1 ∙ 𝑣2 = |𝑣1||𝑣2|cos (𝜔)
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with , , and  as the length of  and  and the angle between these two vectors, respectively, we |𝑣1| |𝑣2| 𝜔 𝑣1 𝑣2

calculated an angle of ω=139° between  and  (Figure S100 b).𝑣1 𝑣2

Second, we calculated the normal vector of the indanone plane ( ) making use of the vector cross product 𝑛

of  and , 𝑣1 𝑣2

,𝑛 =  𝑣1 × 𝑣2

and spherical coordinates (r1, 1, 1, r2, 2, 2), with ri as the length of vector i, i the polar angle and i 

the azimuthal angle of vector i26. We can identify the particular azimuthal angles as the inclination angles 

of the TMs (Table S 10, S 12, S 18, S 20) and the polar angles are either 0° or 139°. Furthermore, we set 

the length of the vectors equal to 1, because we are only interested in the direction of the plane’s normal 

vector.

Figure S102: (a) Simulated structure of the indanone unit (B3LYP, 6-31G(2d,2p) with atom numbers 
indicated) and (b) scheme of vectors 1 and 2 used in order to calculate the indanone plane’s normal vector.

In the case of the transition moments (TMs) originating from vibrations at ITIC in AnE-PVstat:ITIC, 

s(C≡N) exhibits an angle of 15° to the substrate ( = 75°, Figure S101), whereas (C=O) shows an angle 

of 7° to the substrate ( = 83°). As a consequence of the symmetry of absorption, we cannot separate 

between an upward ( > 0) or downward orientation ( < 0) of a transition moment. Thus, we distinguish 
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between all four possible cases, as stated in Table S26. Two cases become evident, the normal vector of 

the indanone plane is inclined either by 29° relative to the film normal (z axis) or by 16°, which indicates 

that the indanone plane is tilted by 29° or 16° out of the film plane (x-y plane), respectively. Having the 

inclination of the anthracene unit ( = 19°) and the fast geminate recombination in mind, the value of 

 = 16° is most likely and supported by results from other measurements, whereas the value of  = 29° can 

be neglected.

Table S28: Calculated inclination of the indanone plane’s normal vector in dependence of the particular 
inclination angles of the TMs.

  Inclination of 
indanone plane [°]

+75 +83 29
-75 +83 16
+75 -83 16
-75 -83 29

Concerning the anthracene deformation, the inclination of the TM perpendicular to the backbone resulted 

in  = 71°, which means this TM is tilted by 19° relative to the substrate (Figure S101). On the other hand, 

the combined deformation vibration of the anthracene and 1,4-disubstituted benzene rings at around 

 with the TM along the backbone resulted in a flat-on alignment ( = 90°) of this TM. 𝜈̅ ≈ 1030 𝑐𝑚 ‒ 1

Thus, the anthracene plane is tilted by 19° relative to the substrate, and consequently the molecular planes 

formed through the indanone and the anthracene parts are parallel within the measurement accuracy.

For the ring stretching vibrations at the 1,4-disubstituted benzene rings in AnE-PVstat, the TMs are inclined 

at 4° relative to the substrate ( = 86°). Because of the greater integrated absorbance, we focus on the TMs 

of the vibration at  and neglect the TMs of the vibration at . Moreover, one 𝜈 = 1204 𝑐𝑚 ‒ 1 𝜈 = 1184 𝑐𝑚 ‒ 1

repeat unit comprises 3 different 1,4-disubstituted benzene rings. Thus, the inclination we measured is 

influenced through the particular inclination of each of these rings, which explains the difference to the 

orientation of the anthracene or indanone plane.
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Figure S103: Inclination of the examined TMs (solid arrows) and indicated planes’ normal vectors (dotted 
arrows) for AnE-PVstat:ITIC. (C=O): green solid, s(C≡N): orange solid, indanone plane: red dotted, 
anthracene deformation: blue solid, anthracene plane: blue dotted, (COC): cyan solid, 1,4-disubstituted 
benzene ring plane: cyan dotted.

In the case of PBDB-T:ITIC, the TMs of s(C≡N) and (C=O) exhibit an angle of 12° and 0° to the 

substrate ( = 78° and 90°), respectively (Figure S102). Thus, the normal vector of the indanone plane is 

inclined by 18° relative to the film normal, which is tantamount with the tilt of the indanone plane relative 

to the film plane. Since one TM is parallel to the substrate ( = 90°), all possible cases of an upward or 

downward orientation of the other TM results in the same inclination of the indanone plane (Table S27). 

On the other hand, the inclination of the TMs connected to (C=O) in PBDB-T amount 90°. This indicates 

a flat on orientation of this unit.

Table S29: Calculated inclination of the indanone plane’s normal vector in dependence of the particular 
inclination angles of the TMs.

  Inclination of 
indanone plane [°]

+78 +90 18
-78 +90 18
+78 -90 18
-78 -90 18
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Figure S104: Inclination of the examined TMs (solid arrows) and indicated planes’ normal vectors (dotted 
arrows) for PBDB-T:ITIC. (C=O): green solid, s(C≡N): orange solid, indanone plane: red dotted, 
(C=O): blue solid, PBDB-T plane: blue dotted.

In summary, the indanone part in ITIC and the anthracene part in AnE-PVstat are in parallel alignment (= 

16° vs. 19°), whereas the indanone part in ITIC and PBDB-T are tilted ( = 18° vs. 0°). As a consequence, 

stacking is hindered in PBDB T:ITIC, which allows for percolation pathways. In AnE-PVstat:ITIC, 

instead, donor and acceptor molecules undergo  stacking which is in agreement with the parallel 

orientation of the distinct subunits determined individually by means of IR-TMOA and experimental 

findings as the pronounced donor quenching or the fast geminate recombination. Thus, the interpretation of 

the intermixing of donor and acceptor molecules is highly supported.
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