Supporting Information

Catalyst-free growth of layer-structured CuInSe₂/ β -In₂Se₃ microwires for ultrasensitive self-powered photodetectors based on lateral p-n junction

Jianfeng He,^{ab} Hongyu Chen,^{*ab} Qixiao Zhao,^{ab} Yifan Wang,^{ab} Yuan Pan,^{ab} Shan Huang,^{ab} Francis Chi-Chung Ling,^c Shuangpeng Wang,^d Shichen Su^{*abe}

Email: chenhy@m.scnu.edu.cn; shichensu@scnu.edu.cn

- a. Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P.R. China.
- b. Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou 510631, P.R. China.
- c. Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077 P. R. China.
- d. Instituted of Applied Physics and Materials Engineering, University of Macau, 999078, Macau.
- e. SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511517, P.R. China.

Fig. S1 Schematic diagram of layer-structured In_2Se_3 microwires prepared by chemical vapor deposition (CVD) method.

Fig. S2 (a) Low-magnification TEM image of a single-crystalline hexagonal In_2Se_3 microwire with the [1120] growth direction. Inset: corresponding SEAD pattern. (b) The cross-section view of In_2Se_3 microwire. (c) Layered crystal structure of β -In₂Se₃ based on the octahedral bonding of the Se-In-Se-In-Se layers.

Fig. S3 (a) EDS spectrum of the as-prepared In_2Se_3 microwires. (b) EDS spectrum of the as-prepared CuInSe₂ microwires. (c) The crystal structure of CuInSe₂.

Fig. S4 The AFM image of In_2Se_3 microwire in the 1D layer-structured CuInSe₂/In₂Se₃ lateral p-n junction.

Fig. S5 (a) Transfer curve of CuInSe₂ field-effect transistor. Inset: schematic diagram of CuInSe₂ field-effect transistor. (b) Transfer curve of In_2Se_3 field-effect transistor. Inset: schematic diagram of In_2Se_3 field-effect transistor.

Fig. S6 (a) I-V curve of $In/CuInSe_2/In_2Se_3/In$ device in logarithmic coordination. (b) I-V curve of $In/In_2Se_3/In$ device in logarithmic coordination. (c) I-V curve of $In/CuInSe_2/In$ device in logarithmic coordination.

Fig. S7 I-V curves of In_2Se_3 device under different light intensities (405 nm; 0.19, 1.7, 4.1, 11.2, 25.2 mW/cm²).

Fig. S8 An amplificatory dark current of 1D lateral $CuInSe_2/In_2Se_3$ p-n junction photodetector in Fig. 6a.

Fig. S9 Energy band diagram of the 1D layer-structured $CuInSe_2/In_2Se_3$ lateral p-n junction under dark.