Supporting Information

Improving power factor and figure of merit of p-type CuSbSe2 via

introducing Sb vacancies

Tao Chen^{a,b}, Hongwei Ming^{a,b}, Xiaoying Qin^{a,*}, Chen Zhu^{a,b}, Lulu Huang^{a,b}, Yunxiang Hou^c, Di Li^{a,*}, Jian Zhang^{a,*}, Hongxing Xin^a

^a Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.

^b University of Science and Technology of China, Hefei 230026, China.230601, P. R. China

^c MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

* Corresponding author:

E-mail address: <u>xyqin@issp.ac.cn</u> (X.Y. Qin), <u>lidi@issp.ac.cn</u> (D.Li), <u>zhangjian@issp.ac.cn</u> (J.Zhang)

CuSb1-xSe2	<i>d</i> (g cm ³)	<i>d</i> r (%)
x=0	5.71	97.1
x=0.03	5.85	99.4
x=0.06	5.86	99.6
x=0.09	5.84	99.3
x=0.12	5.85	99.4

1. The density(d) and the relative density(d_r) of CuSb_{1-x}Se₂(x=0-0.12)

Table S1. The density(d) and the relative density(d_r) of CuSb_{1-x}Se₂(x=0-0.12)

2. The temperature dependence of C_p for $CuSb_{1-x}Se_2$ (x=0-0.12) samples.

Figure S1. The temperature dependence of C_p for $CuSb_{1-x}Se_2$ (x=0-0.12) samples.

3. EDAX measurement for all samples of CuSb_{1-x}Se₂ (x=0, 0.03, 0.06, 0.09 and 0.12).

	Cu (At%)	Sb (At%)	Se (At%)
CuSbSe ₂	27.5	26.3	46.2
CuSb _{0.97} Se ₂	27.6	26.1	46.3
CuSb _{0.94} Se ₂	28.0	25.7	46.4
CuSb _{0.91} Se ₂	28.6	25.6	45.8
CuSb _{0.88} Se ₂	29.1	24.5	46.4

Table S2 Compositions of all samples measured with EDAX.