Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

A strategy towards melanin-based functional material: rGO and sulfonated melanin composites

Bruna Andressa Bregadiolli^{a*}, João Vitor Paulin^b, Luiz Gustavo Simão Albano^c, Lucas Michelão

Martins^a, Davi Henrique Starnini de Camargo^c, Luiz Carlos da Silva Filho^{b,d}, Carlos Cesar Bof

Bufon^{b,c} and Carlos Frederico de Oliveira Graeff^{a,b}

^a São Paulo State University (UNESP), School of Sciences, Department of Physics, Bauru, Brazil; ^b São Paulo State University (UNESP), School of Sciences, Postgraduate Program in Science and Technology of Materials (POSMAT), Bauru, Brazil;

^c Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil;

^d São Paulo State University (UNESP), School of Sciences, Department of Chemistry, Bauru, Brazil.

Table of contents

Total number of pages: **18** Number of Figures: **20** Number of Tables: **01**

Figure S1	S2
Figure S2	S2
Figure S3	S3
Figure S4	S4
Figure S5	S5
Figure S6	S6
Figure S7	S6
Figure S8	S7
Figure S9	S7
Figure S10	S8
Figure S11	S9
Figure S12	S10
Figure S13	S11
Figure S14	S12
Figure S15	S13
Figure S16	S14
Figure S17	S15
Figure S18	S16
Figure S19	S17
Figure S20	S18
Table S1 S	517

Figure S1: Evolution of the absorbance spectra of the composite's synthesis. With time the 450 nm absorption band decrease (indicating that the melanin precursor is being consumed) and a broad-band featureless spectrum characteristic of melanin appears.

Figure S2: (a) Optical image of IDE electrode and (b) interdigitated electrode leakage current.

Figure S3: FEG-SEM images with different magnifications for the samples SMel and rGO@SMel composites.

Figure S4: (a) C1s, (b) O1s, (c) N1s and (d) S 2p high-resolution XPS spectra of the SMel. O-Mo at O1s region is related to sample support.

Figure S5: (a) C1s, (b) O1s, (c) N1s and d) S high-resolution XPS spectra of the 5%rGO@SMel.

Figure S6: (a) C1s, (b) O1s, (c) N1s and (d) S 2p high-resolution XPS spectra of the 15%rGO@SMel. O-Mo at O1s region is related to sample support.

Figure S7: (a) C1s and (b) O1s high-resolution XPS spectra of rGO.

Figure S8: XPS Survey scan for the different samples studied.

Figure S9: FTIR spectra of SMel, 5%SMel@rGO, 10%SMel@rGO and 15%SMel@rGO.

Figure S10: ¹³C CP/MAS NMR spectra of SMel.

Figure S11: ¹³C CP/MAS NMR spectra of 5%rGO@SMel.

Figure S12: ¹³C CP/MAS NMR spectra of 10%rGO@SMel.

Figure S13: ¹³C CP/MAS NMR spectra of 15%rGO@SMel.

Figure S14: ¹³C CP/MAS NMR spectra of rGO.

Figure S15: Solubility test of the composites 5%rGO@SMel and 15%rGO@SMel in dichloromethane, o-dichlorobenzene, methanol, dimethylformamide, dimethyl sulfoxide and water.

Figure S16: (a) Optical image and (b) transmittance spectra of SMel and rGO@SMel composites thin films.

Figure S17: AFM topography images and thickness profiles (red lines): (a) SMel, (b) 5%rGO@SMel, (c) 10%rGO@SMel and (d) 15%rGO@SMel.

Figure S18: Current vs. voltage characteristics of (a) SMel and (b, c and d) rGO@SMel composites in different humidity levels: N_2 , 40 % and 70 % RH. The IV curves were plotted on a log-linear scale to show the humidity dependence of the different rGO@SMel composites.

Figure S19: Example of fitting used to calculate the conductivity at 40% RH for (a) SMel and (b) 15%rGO@SMel composite. Similar behavior was obtained for the other samples and RH.

Table S1: Fitting parameters used to fit the data according to the equivalent circuit at 70% hydration level. The Warburg diffusion element is divided in three components: W-R represents the diffusion impedance, W-T is the system diffusion time and W-P is an exponential factor.

Sample	SMel	5%rGO@SMel	10%rGO@SMel	15%rGO@SMel
R ₁	1.74E+02	1.77E+02	1.87E+02	2.12E+02
R ₂	4.15E+08	4.90E+8	1.66E+07	3.02E+05
W-R	9.14E+07	9.13E+07	8.22E+07	3.36E+08
W-T	4.30E-03	8.06E-11	1.59E-04	5.21E+03
W-P	1.90E-01	0.62E-01	1.13E+00	4.06E-01
СРЕ-Т	1.16E-10	1.18E-10	1.13E-10	1.20E-10
CPE-P (η)	0.99545	0.99477	0.99762	0.99587

Figure S20: Representation of the equivalent circuit for the composite's characterization in between gold electrodes.