Design Optimization of CsPbBr$_3$ Nanocrystals into Zeolite Beta as Ultra-Stable Green Emitters for Backlight Display Applications

Bohan Li a, Yuchi Zhang a, Yan Xu a,* and Zhiguo Xia b,*

a Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China. Email: xuyan@mail.neu.edu.cn

b School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641, China. Email: xiazg@scut.edu.cn

Figure captions

Fig. S1 a XRD patterns of zeolite Beta b SEM image of pure zeolite Beta.

Fig. S2 UV-Vis absorption spectra of CsPbBr$_3$-Beta at different calcination temperature when the mass ratio of (CsBr + PbBr$_2$): Zeolite Beta = 1: 5.

Fig. S3 UV-Vis absorption spectra of CsPbBr$_3$-Beta at different mass ratio when calcined at 600 $^\circ$C.

Fig. S4 Absorption (black line) and emission (green line) spectra of CsPbBr$_3$-Beta. Inset is its photograph under sunlight and UV illumination at 365 nm.

Fig. S5 a XPS spectrum of CsPbBr$_3$-Beta composite; b Cs 3d, Pb 4f, Br 3d, Si 2p, O 1s spectra of CsPbBr$_3$-Beta composite, respectively.

Fig. S6 Surface area and pore size of pristine beta and CsPbBr$_3$-Beta (CsBr + PbBr$_2$: Zeolite Beta = 1: 5) calculated with BET/BJH method.
Fig. S1
a XRD patterns of zeolite Beta
b SEM image of pure zeolite Beta.

Fig. S2
UV-Vis absorption spectra of CsPbBr$_3$–Beta at different calcination temperature when the mass ratio of (CsBr + PbBr$_2$): Zeolite Beta = 1:5.
Fig. S3 UV-Vis absorption spectra of CsPbBr$_3$–Beta at different mass ratio when calcined at 600 °C.

Fig. S4 Absorption (black line) and emission (green line) spectra of CsPbBr$_3$-Beta. Inset is its photograph under sunlight and UV illumination at 365 nm.
Fig. S5

(a) XPS spectrum of CsPbBr$_3$–Beta composite; (b) Cs 3d, Pb 4f, Br 3d, Si 2p, O 1s spectra of CsPbBr$_3$–Beta composite, respectively.
Fig. S6 Surface area and pore size of pristine beta and CsPbBr$_3$–Beta (CsBr + PbBr$_2$: Zeolite Beta = 1:5) calculated with BET/BJH method.