#### Supporting information

# Revealing crystal structures and relative dielectric constants of fluorinated silicon oxides<sup>†</sup>

Pengyan Xue<sup>1,2#</sup>, Junwei Feng<sup>3#</sup>, Congwei Xie<sup>1,3,4\*</sup>, Lan Wang<sup>2</sup>, Abudukadi Tudi<sup>3</sup>, Evgenii V. Tikhonov<sup>1,2\*</sup>, Keith T. Butler<sup>5</sup>

<sup>1</sup> International Center for Materials Discovery, School of Material Science and Engineering, Northwestern Polytechnical University, 127 YouYi Western Road, Xi'an, Shaanxi, 710072, China

<sup>2</sup> State Key Laboratory of Solidification Processing, School of Material Science and

Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China

<sup>3</sup> CAS Key Laboratory of Functional Materials and Devices for Special Environments,

- Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumqi 830011, China.
- <sup>4</sup> Skolkovo Institute of Science and Technology, Skolkovo Innovation Center 143026,
  3 Nobel Street, Moscow, Russian Federation

<sup>5</sup> Department of Chemistry, University of Reading, Whiteknights, RG6 6AH, UK

# Authors contribute to this work equally.

\* Corresponding authors: Congwei Xie: Congwei.Xie@skoltech.ru; Evgenii V. Tikhonov: tikhonov.e@nwpu.edu.cn

#### I Prediction of Structural Connectivity of SiOF compounds

In general, connectivity of a structure is determined by the central atoms<sup>1</sup>: in a typical 1D-connectivity structure, a central atom is coordinated with two ligands that are shared with other central atoms, leading to the formation of a chain with infinite length; 2D-connectivity structures are often obtained with three or more shared ligands coordinating around a central atom and the elementary motif expands in two directions to form a layer; with central atoms of four or more shared ligands, 3D-connectivity structures can be easily constructed. There are also a few 3D-connectivity structures (e.g.,  $P3_121$ -B<sub>2</sub>O<sub>3</sub>) in which central atoms only have three shared ligands.



**Figure S1.** A prediction of structural connectivity of SiOF compounds *vs.* F concentration; (a) 3D-Si<sub>2</sub>O<sub>2</sub> (b) 3D-Si<sub>2</sub>O<sub>3</sub>F<sub>2</sub> (c) 2D-Si<sub>2</sub>O<sub>3</sub>F<sub>2</sub> (d) 1D-SiOF<sub>2</sub> (e) 0D-Si<sub>2</sub>OF<sub>6</sub> and (f) 0D-SiF<sub>4</sub>

According to these guidelines, structural connectivity of SiOF as a function of F concentration can be roughly predicted. As shown in Figure S1(a), if we have a central atom (Si) and four shared ligands (O), we can have 3D-connectivity structures - this is the case of SiO<sub>2</sub>. If we have three shared ligands (O) and one unshared ligand (F), we also can have 3D-connectivity structures (but also an increased chance of 2D-connectivity structures). Both 2- and 3-D connectivity are found for Si<sub>2</sub>O<sub>3</sub>F<sub>2</sub>, as shown in Figure S1(b) & 1(c). If we have two shared ligands (O) and two unshared

(F), we cannot have 3D-connected structures, but will have 1D-connected structures. This is the case of SiOF<sub>2</sub>, as shown in Figure S1 (d). If we have no more than one shared ligand (O), then we can only have 0D structures. This is the cases of  $Si_2OF_6$ and  $SiF_4$ , as shown in Figure S1(e)&(f). Based on these simple geometric considerations we consider it more likely to find 3D-connectivity SiOF structures in the F concentration range (in at. %) from 0 (SiO<sub>2</sub>) to 28.57 (Si<sub>2</sub>O<sub>3</sub>F<sub>2</sub>).

II Dynamical stability of thermodynamically stable SiOF compounds



Figure S2 Phonon dispersion curves computed for three thermodynamically stable SiOF compounds; (a) *Aba*2-Si<sub>2</sub>O<sub>3</sub>F<sub>2</sub> (b) *P*2<sub>1</sub>/*m*-SiOF2 and (c) *Cmca*-Si<sub>2</sub>OF<sub>6</sub>

III Thermodynamical stability of SiOF compounds



Figure S3 Thermodynamical convex hull constructed for SiO2-SiF4 system at zero temperature and ambient pressure; the stable structures of SiO<sub>2</sub> ( $P3_121$ ) and SiF<sub>4</sub> (*I*-43*m*) were used.

| Common d                                      | C                     | $\Delta H$ | $H = E_{\text{hull}}$ |       | CD true                                            | Structure    |
|-----------------------------------------------|-----------------------|------------|-----------------------|-------|----------------------------------------------------|--------------|
| Compound Spg                                  |                       | (meV/f.u.) | (meV/f.u.)            | (%)   | СР-туре                                            | Connectivity |
| SiO <sub>2</sub>                              | I-42d                 | 0          | 0                     | 0     | SiO <sub>4</sub>                                   | 3D           |
| $\mathrm{Si}_8\mathrm{O}_{15}\mathrm{F}_2$    | <i>P</i> 1            | 58.2       | 68.2                  | 8     | SiO <sub>4</sub> +SiO <sub>3</sub> F               | 3D           |
| $\mathrm{Si}_6\mathrm{O}_{11}\mathrm{F}_2$    | <i>P</i> -1           | 2.6        | 15.9                  | 10.53 | SiO <sub>4</sub> +SiO <sub>3</sub> F               | 3D           |
| $Si_5O_9F_2$                                  | <i>P</i> 1            | -7.2       | 8.8                   | 12.50 | SiO <sub>4</sub> +SiO <sub>3</sub> F               | 3D           |
| $Si_4O_7F_2$                                  | <i>P</i> 1            | -5.1       | 14.8                  | 15.38 | SiO <sub>4</sub> +SiO <sub>3</sub> F               | 3D           |
| $Si_3O_5F_2$                                  | <i>P</i> 1            | -3.1       | 23.4                  | 20    | SiO <sub>4</sub> +SiO <sub>3</sub> F               | 3D           |
| $\mathrm{Si}_5\mathrm{O}_8\mathrm{F}_4$       | <i>P</i> 1            | -13.9      | 17.9                  | 23.53 | SiO <sub>4</sub> +SiO <sub>3</sub> F               | 3D           |
| $Si_2O_3F_2$                                  | Aba2                  | -39.8      | 0                     | 28.57 | SiO <sub>3</sub> F                                 | 2D           |
| Si <sub>3</sub> O <sub>4</sub> F <sub>4</sub> | <i>P</i> 1            | -30.8      | 10.1                  | 36.36 | SiO <sub>3</sub> F+SiO <sub>2</sub> F <sub>2</sub> | 2D           |
| $Si_5O_6F_8$                                  | <i>P</i> 1            | -20.8      | 21.1                  | 42.11 | SiO <sub>3</sub> F+SiO <sub>2</sub> F <sub>2</sub> | 2D           |
| $Si_2O_2F_4$                                  | $P2_{1}/m$            | -43.3      | 0                     | 50    | $SiO_2F_2$                                         | 1D           |
| $\mathrm{Si}_5\mathrm{O}_4\mathrm{F}_{12}$    | <i>P</i> -43 <i>m</i> | -9.1       | 26.8                  | 57.14 | SiO <sub>2</sub> F <sub>2</sub> +SiOF <sub>3</sub> | 0D           |
| $Si_3O_2F_8$                                  | <i>C</i> 2            | -22.7      | 8.3                   | 61.54 | SiO <sub>2</sub> F <sub>2</sub> +SiOF <sub>3</sub> | 0D           |
| Si <sub>2</sub> OF <sub>6</sub>               | Cmca                  | -24.9      | 0                     | 66.67 | SiOF <sub>3</sub>                                  | 0D           |
| SiF <sub>4</sub>                              | I-43m                 | 0          | 0                     | 80    | $\mathrm{SiF}_4$                                   | 0D           |

**Table S1.** Detailed information of predicted thermodynamically stable and metastable SiOF structures; the lowest energy structures at a given composition are listed.

IV Crystal structure and dynamical stability of Cc-Si<sub>2</sub>O<sub>3</sub>F<sub>2</sub>



Figure S4 Crystal structure (a) and phonon dispersion curve of Cc-Si<sub>2</sub>O<sub>3</sub>F<sub>2</sub>

#### V Test of the semi-empirical model

Table S2 The computed and predicted dielectric constants for seven more predicted metastable SiOF structures; Noting that these seven metastable SiOF compounds are the second lowest energy structures in their compositions.

| Compound                                | Spg         | $\Delta H$ | $E_{hull}$ | V                 | CP-type                              | k           | k      |
|-----------------------------------------|-------------|------------|------------|-------------------|--------------------------------------|-------------|--------|
|                                         |             | (meV/atom) | (meV/atom) | (A <sup>3</sup> ) |                                      | (Predicted) | (DFPT) |
|                                         |             |            |            |                   |                                      |             |        |
| $Si_6O_{11}F_2$                         | <i>P</i> -1 | 2.8        | 6.9        | 47.30             | SiO <sub>4</sub> +SiO <sub>3</sub> F | 3.91        | 3.84   |
| $Si_5O_9F_2$                            | <i>C</i> 2  | 1.7        | 6.6        | 48.49             | SiO <sub>4</sub> +SiO <sub>3</sub> F | 3.81        | 3.84   |
| $\mathrm{Si}_4\mathrm{O}_7\mathrm{F}_2$ | <i>C</i> 2  | -0.9       | 5.1        | 50.35             | SiO <sub>4</sub> +SiO <sub>3</sub> F | 3.68        | 3.79   |
| $Si_3O_5F_2$                            | Ibam        | 3.2        | 11.0       | 56.45             | SiO <sub>4</sub> +SiO <sub>3</sub> F | 3.32        | 3.27   |
| $\mathrm{Si}_5\mathrm{O}_8\mathrm{F}_4$ | <i>P</i> 1  | -3.0       | 6.2        | 54.70             | SiO <sub>4</sub> +SiO <sub>3</sub> F | 3.38        | 3.43   |
| $Si_2O_3F_2$                            | Cm          | -9.8       | 1.5        | 54.82             | SiO <sub>3</sub> F                   | 3.34        | 3.58   |
| SiOF <sub>2</sub>                       | Ama2        | -6.8       | 3.9        | 68.17             | $SiO_2F_2$                           | 2.81        | 2.81   |
|                                         |             |            |            |                   |                                      |             |        |

## VI The effect of $E_{\rm g}$ on $\varepsilon_{\rm e}$ of SiOF compounds



Figure S5 Effect of  $E_{\rm g}$  on  $\varepsilon_{\rm e}$  of SiOF compounds

#### VII Phonon behaviors of three stable SiOF compounds

| Table S3 Lattice contributions to $\varepsilon_{\rm L}$ | of three SiOF compound | ds along with SiO | and SiF <sub>4</sub> : only                                   |
|---------------------------------------------------------|------------------------|-------------------|---------------------------------------------------------------|
|                                                         | of three biof compound | as along with bio | $\frac{1}{2}$ und $\frac{1}{2}$ $\frac{1}{4}$ , $\frac{1}{2}$ |

| I-42d-SiO <sub>2</sub>           |                    | Aba2-Si <sub>2</sub> O <sub>3</sub> F <sub>2</sub> |                       | $P2_1/m$ -SiOF <sub>2</sub> |                    | <i>Cmca</i> -Si <sub>2</sub> OF <sub>6</sub> |                    | I-43m-SiF <sub>4</sub>   |                            |
|----------------------------------|--------------------|----------------------------------------------------|-----------------------|-----------------------------|--------------------|----------------------------------------------|--------------------|--------------------------|----------------------------|
| $(\omega < 500 \text{ cm}^{-1})$ |                    |                                                    |                       |                             |                    |                                              |                    |                          |                            |
| $\omega(\text{cm}^{-1})$         | $arepsilon_{ m L}$ | $\omega(\text{cm}^{-1})$                           | $\varepsilon_{\rm L}$ | $\omega(\text{cm}^{-1})$    | $arepsilon_{ m L}$ | $\omega(\text{cm}^{-1})$                     | $arepsilon_{ m L}$ | $\omega(\text{cm}^{-1})$ | $\mathcal{E}_{\mathrm{L}}$ |
| 422                              | 0.40               | 211                                                | 0.04                  | 284                         | 0.03               | 363                                          | 0.12               | 351                      | 0.30                       |
| 442                              | 0.57               | 272                                                | 0.06                  | 366                         | 0.35               | 373                                          | 0.12               |                          |                            |
|                                  |                    | 409                                                | 0.43                  | 397                         | 0.13               | 380                                          | 0.08               |                          |                            |
|                                  |                    | 427                                                | 0.16                  | 403                         | 0.09               | 384                                          | 0.03               |                          |                            |
| SUM                              | 0.85               | SUM                                                | 0.69                  | SUM                         | 0.60               | SUM                                          | 0.41               | SUM                      | 0.30                       |
|                                  |                    |                                                    |                       | $(\omega > 500)$            | cm <sup>-1</sup> ) |                                              |                    |                          |                            |
| 752                              | 0.07               | 874                                                | 0.09                  | 818                         | 0.05               | 935                                          | 0.06               | 947                      | 0.17                       |
| 1047                             | 0.21               | 1092                                               | 0.17                  | 915                         | 0.08               | 952                                          | 0.04               |                          |                            |
| 1055                             | 0.39               | 1104                                               | 0.16                  | 1134                        | 0.14               | 1193                                         | 0.11               |                          |                            |
|                                  |                    |                                                    |                       | 1204                        | 0.04               |                                              |                    |                          |                            |
| SUM                              | 0.67               | SUM                                                | 0.42                  | SUM                         | 0.31               | SUM                                          | 0.21               | SUM                      | 0.17                       |

| those higher than | 0.03 | are | listed. |
|-------------------|------|-----|---------|
|-------------------|------|-----|---------|

### References

1 B. Kesanli and W. Lin, Coord. Chem. Rev., 2003, 246(1-2), 305-326.