Supporting Information

Strong sensitivity enhancement in lifetime-based luminescence

thermometry by co-doping of SrTiO₃:Mn⁴⁺ nanocrystals with trivalent

lanthanide ions

W. M. Piotrowski¹, K. Trejgis¹, M. Dramicanin², L. Marciniak^{1*}

¹Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw,

Poland

²Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, Belgrade 11001, Serbia

* corresponding author: <u>limarciniak@intibs.pl</u>

KEYWORDS luminescent thermometry, emission decays, lanthanides, SrTiO₃, luminescence

The average lifetime of the excited states were calculated with the equation Eq. S1:

$$\tau_{avr} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$
(Eq. S1)

where: τ_1 , τ_2 – the average time, which is in accordance with the relation $\tau = t \cdot \ln(2)$ and A_1 , A_2 – amplitude, which are the parameters of the doubleexponential function:

$$y = y_0 + A_1 \cdot \exp(-\frac{x}{t_1}) + A_2 \cdot \exp(-\frac{x}{t_2})$$
 (Eq. S2)

Figure S1. The zoom of the maximum of X-ray diffraction patterns of SrTiO₃:Mn⁴⁺ with different Ln³⁺ dopants.

Site	Coordination number (CN)	Shannon effective ionic radii (EIR) (pm)								
		Ti ⁴⁺			M	n ⁴⁺		Ti ³⁺		
octahedral	VI (6-fold)	60.5			5	3	67			
		Sr ²⁺	Lu ³⁺	Tm ³⁺	Er ³⁺	Ho ³⁺	Dy ³⁺	Eu ³⁺	La ³⁺	
preferred	VIII/X	-	97.7	99.4	100.4	101.5	102.7	106.6	127	
	(8-/10-fold)		(VIII)	(VIII)	(VIII)	(VIII)	(VIII)	(VIII)	(X)	
cuboctahedral	XII (12-fold)	144	120.4 °	122.4 °	123.4 °	123.4 °	125.5 °	129.5 °	136	

Table S1. Shannon effective ionic radii of SrTiO₃ lattice and dopant ions.

e – extrapolated linearly (in the all cases $R^2 > 0.9987$)

Figure S2. Excitation spectra of SrTiO₃:Mn⁴⁺, Ln³⁺ with different optically active-a) and passive -b) Ln³⁺ ions measured at 123 K for emission of Mn⁴⁺ ($\lambda_{em} = 725$ nm).

Figure S3. Emission spectra of SrTiO₃:Mn⁴⁺, Ln³⁺ with different Ln³⁺ ions measured with $\lambda_{exc} = 400$ nm at 123 K – a) with the zoom of the same spectra in the 715-740 nm spectral range – b).

Figure S4. Thermal evolution of emission spectra excited by $\lambda_{exc} = 400 \text{ nm}$ for the SrTiO₃:0.1% Mn⁴⁺ – a) and SrTiO₃:0.1% Mn⁴⁺, Ln³⁺, where Ln³⁺ = Lu³⁺ – b), Tm³⁺ – c), Er³⁺ – d), Ho³⁺ – e), Dy³⁺ – f), Eu³⁺ – g), La³⁺ – h).

Figure S5. Thermal evolution of luminescent decays of ²E excited state of Mn^{4+} for the SrTiO₃:0.1% Mn^{4+} – a) and SrTiO₃:0.1% Mn^{4+} , Ln^{3+} , where $Ln^{3+} = Lu^{3+} - b$), $Tm^{3+} - c$), $Er^{3+} - d$), $Ho^{3+} - e$), $Dy^{3+} - f$), $Eu^{3+} - g$), $La^{3+} - h$).

co-dopant ion	Eu ³⁺	Dy ³⁺	Er ³⁺	Ho ³⁺	Lu ³⁺	La ³⁺	Tm ³⁺
energy distance of excited state above ² E (cm ⁻¹)	3436	7228	1591	1658	-	-	689
energy distance of excited state below ² E (cm ⁻¹)	8144	560	11 07	299	-	-	940
mean energy distance of excited state from ² E (cm ⁻¹)	5790	3894	1349	978.5			814.5
τ_{avr} at 123 K (ms)	0.90	0.86	0.78	0.71	0.71	0.61	0.54
local minimum value of SA	2.5331	2.3892	1.9774 1	.6879 2.0	66 ,	~0.8894	~1.373

Table S2. The comparison of energy distances of Ln^{3+} excited states from ²E of Mn^{4+} ions and thermometric parameters.

(µs K-1)							
temperature of $S_{A \min}(K)$	196.9	199.8	182.4	164.9	173.15	~131.4	~190.05
maximum value of S_A (µs K^{-1})	10.959	10.003	10.155	9.4355	7.5298	6.3693	7.1677
temperature of $S_{A max}(K)$	263.5	265.2	254.7	251.9	249.15	248.9	261.9

Figure S6. Thermal dependence of temperature estimation uncertainty for different Ln³⁺ in SrTiO₃:Mn⁴⁺, Ln³⁺ samples.

Figure S7. X-ray diffraction patterns of SrTiO₃:Mn⁴⁺, Lu³⁺ co-doped with 1% and 5% of Al³⁺ ions.

Figure S8. Thermal evolution of luminescent decays of ²E excited state of Mn^{4+} for the SrTiO₃:0.1% Mn^{4+} , 1% Lu^{3+} , 1% Al^{3+} - a and SrTiO₃:0.1% Mn^{4+} , 1% Lu^{3+} , 5% Al^{3+} - b.