Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Absence of phonon gap driven ultralow lattice thermal conductivity in half-Heusler LuNiBi

Xiaoxia Yu^a, Jiawang Hong^{a, *}

^a School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Figure S1. The phonon dispersion for half-Heusler of TiNiSn¹, ZrCoBi² and TiCoSb³.

1. Two-channel Phonon Transport Model

To understand the physical mechanism of the two-channel phonon transport model, distribution of the mean free path (MFP) at room temperature for two half-Heusler compounds is shown in **Figure S2a**. The most prominent feature here is that a considerable portion of mean free path are smaller than the minimum atomic distance or the so-called Ioffe-Regel limit, which can be ascribed to the dual effect of short lifetime and small phonon velocity. This result suggests that the phonon Boltzmann transport equation methodology is no longer appropriate, since phonons are often considered to be "ill defined" in this case.^{4, 5} According to two-channel phonon transport model, there is a coexistence of a phonon conduction channel (κ_{latt}) and the hopping channel of localized vibrations (κ_{hop}) for the crystalline materials, particularly with loosely bound atoms. The former signifies the thermal transport carried by the "well-defined" phonon modes, whose MFP is larger than the lattice parameters, while the latter denotes the direct energy transfer between localized atomic vibrations, recognized as the "ill-defined" phonon modes, whose MFP is smaller than that of Ioffe-Regel limit. The "well-defined" phonon modes are commonly described by the Boltzmann transport equation methods. While the thermal conductivity of "ill-defined" phonon is calculated via the Cahill-Watson-Pohl model.⁵ Note that the κ_{latt} obtained here does not subtract the contribution from phonons with MFPs less than the Ioffe-Regel limit (0.3 nm) both for LuNiBi and YNiBi because that the phonons with MFP less than the Ioffe-Regel limit give a negligible contribution for κ_{latt} as shown in **Figure S2b**.

Figure S2. (a) Phonon frequency dependent mean free paths and (b) mean free paths dependent cumulative thermal conductivity for LuNiBi and YNiBi at room temperature. The black line marks the Ioffe-Regel limit defined by the average atomic distance in LuNiBi.

 Table S1. Comparison of thermal conductivity at room temperature for Selected Materials in

 Fig.1a. The values are theoretical results except for explicit indication of "exp" in the table. (Unit:

 W/mK)

Structure	$\kappa_{ m latt}$	Structure	K _{latt}
LuNiBi	0.26	Fe ₂ VAl	23.00 ⁶ , 28.00 ⁷ exp
YNiBi	0.88	Ba ₂ AuBi	3.608
HfRhSb	17.359	Ba ₂ AuAs	4.70^{8}
FeNbSb	$18.00^{10}, 27.00^{11}$	Sr ₂ AuBi	4.208
FeVSb	12.2012	Sr ₂ AuAs	5.408
TiCoSb	25.0013	Ca ₂ AuBi	4.808
TiNiSn	15.29 ¹⁴ , 7.80 ¹⁵ exp	Ca ₂ HgPb	6.108
ScNiSb	19.5011	CoSb ₃	11.50^{16}
ScNiBi	14.3011	SrRu ₄ As ₁₂	0.47 ¹⁷ exp
ZrNiSn	13.40 ¹⁸ , 5.90 ¹⁹ exp	CeFe ₄ As ₁₂	3.80 ²⁰ exp
ZrNiPb	13.8714	$BaCo_4Sb_{12}$	6.1016

ZrCoSb	23.06 ²¹ , 19.86 ²² exp	YbFe ₄ Sb ₁₂	0.3423
ZrCoBi	17.70 ¹⁴ , 9.00 ²⁴ exp	$K_8Al_8Si_{38}$	1.20 ²⁵ exp
LaPdSb	6.50 ²⁶ exp	Si ₂ Ge	0.28^{27}
GdPdSb	4.90 ²⁶ exp	Ba ₈ Ga ₁₆ Ge ₃₀	2.00^{28}
HfNiSn	18.5014	BiCuSeO	0.55 ²⁹
TaIrSn	18.8030	NaCo ₂ O ₄	3.94 ³¹
TaFeSb	28.1514	SrHfO ₃	4.54 ³² exp
TaCoSn	19.7514	SrRuO ₃	5.72 ³² exp
TiPdS	5.4733	PbTe	1.50 ³⁴ , 2.00 ³⁵ exp
NbCoSn	6.50 ³⁶ exp	SnSe	$0.72(b)^{37} \exp(b)^{37} \exp$

References

- 1 A. A. Musari, B. I. Adetunji, P. O. Adebambo and G. A. Adebayo, *Mater. Today Commun.*, 2020, **22**, 100671.
- 2 G. Surucu, M. Isik, A. Candan, X. Wang and H. H. Gullu, *Physica B: Condens. Matter*, 2020, **587**, 412146.
- 3 Data from the internet https://materialsproject.org/materials/mp-5967/.
- 4 P. B. Allen and J. L. Feldman, *Phys. Rev. B*, 1993, 48, 12581–12588.
- 5 D. G. Cahill and R. O. Pohl, Solid State Commun., 1989, 70, 927–930.
- 6 S. Anand, R. Gurunathan, T. Soldi, L. Borgsmiller, R. Orenstein and G. J. Snyder, *J. Mater. Chem. C*, 2020, **8**, 10174–10184.
- 7 Y. Nishino, S. Deguchi and U. Mizutani, Phys. Rev. B, 2006, 74, 115115.
- 8 J. He, M. Amsler, Y. Xia, S. S. Naghavi, V. I. Hegde, S. Hao, S. Goedecker, V. Ozoliņš and C. Wolverton, *Phys. Rev. Lett.*, 2016, **117**, 046602.
- 9 K. Kaur, R. Kumar and D. P. Rai, J. Alloys Compd., 2018, 763, 1018–1023.
- 10C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao and T. Zhu, *Nat. Commun.*, 2015, 6, 8144.
- 11 J. Zhou, H. Zhu, T.-H. Liu, Q. Song, R. He, J. Mao, Z. Liu, W. Ren, B. Liao, D. J. Singh, Z. Ren and G. Chen, *Nat. Commun.*, 2018, **9**, 1721.
- 12T. J. Zhu, C. G. Fu, H. H. Xie, Y. T. Liu, B. Feng, J. Xie and X. B. Zhao, *EPL*, 2013, **104**, 46003.
- 13 T. Sekimoto, K. Kurosaki, H. Muta and S. Yamanaka, *Mater. Trans.*, 2006, 47, 1445–1448.
- 14S. Anand, M. Wood, Y. Xia, C. Wolverton and G. J. Snyder, *Joule*, 2019, **3**, 1226–1238.
- 15 S. Bhattacharya, M. J. Skove, M. Russell, T. M. Tritt, Y. Xia, V. Ponnambalam, S. J. Poon and N. Thadhani, *Phys. Rev. B*, 2008, **77**, 184203.
- 16W. Li and N. Mingo, Phys. Rev. B, 2014, 89, 184304.
- 17T. M. Bhat, M. Nabi and D. C. Gupta, *Physica B: Condens. Matter.*, 2020, **592**, 412209.
- 18L. Andrea, G. Hug and L. Chaput, J. Phys.: Condens. Matter., 2015, 27, 425401.
- 19C. Uher, J. Yang, S. Hu, D. T. Morelli and G. P. Meisner, *Phys. Rev. B*, 1999, **59**, 8615–8621.
- 20A. Watcharapasorn, R. S. Feigelson, T. Caillat, A. Borshchevsky, G. J. Snyder and J.-P. Fleurial, *J. Appl. Phys.*, 2002, **91**, 1344–1348.
- 21 H. Joshi, D. P. Rai, A. Laref and R. K. Thapa, *Mater. Res. Express*, 2019, 6, 066307.
- 22 R. He, T. Zhu, Y. Wang, U. Wolff, J.-C. Jaud, A. Sotnikov, P. Potapov, D. Wolf, P. Ying, M. Wood, Z. Liu, L. Feng, N. P. Rodriguez, G. J. Snyder, J. C. Grossman, K. Nielsch and G. Schierning, *Energy Environ. Sci.*, 2020, **13**, 5165–5176.
- 23 W. Li and N. Mingo, Phys. Rev. B, 2015, 91, 144304.
- 24H. Zhu, R. He, J. Mao, Q. Zhu, C. Li, J. Sun, W. Ren, Y. Wang, Z. Liu, Z. Tang, A. Sotnikov, Z. Wang, D. Broido, D. J. Singh, G. Chen, K. Nielsch and Z. Ren, *Nat. Commun.*, 2018, 9, 2497.

- 25 F. Sui and S. M. Kauzlarich, Chem. Mater., 2016, 28, 3099-3107.
- 26A. Mukhopadhyay, N. Lakshminarasimhan and N. Mohapatra, J. Phys. D: Appl. Phys., 2018, **51**, 265004.
- 27 J. Shen, T. Xie, L. Zhang, P. Wang and Z. Fang, Sci Rep, 2020, 10, 3068.
- 28A. F. May, E. S. Toberer, A. Saramat and G. J. Snyder, *Phys. Rev. B*, 2009, **80**, 125205.
- 29L.-D. Zhao, J. He, D. Berardan, Y. Lin, J.-F. Li, C.-W. Nan and N. Dragoe, *Energy Environ. Sci.*, 2014, 7, 2900–2924.
- 30K. Kaur and R. Kumar, Phys. Lett. A, 2017, 381, 3760-3765.
- 31 K. Kurosaki, H. Muta, M. Uno and S. Yamanaka, *J. Alloys Compd.*, 2001, **315**, 234–236.
- 32S. Yamanaka, T. Maekawa, H. Muta, T. Matsuda, S. Kobayashi and K. Kurosaki, *Solid. State. Chem.*, 2004, **177**, 3484–3489.
- 33 K. Kaur, EPL, 2017, 117, 47002.
- 34J. He, Y. Xia, S. S. Naghavi, V. Ozoliņš and C. Wolverton, *Nat. Commun.*, 2019, 10, 719.
- 35H. Wang, A. D. LaLonde, Y. Pei and G. J. Snyder, *Adv. Funct. Mater.*, 2013, 23, 1586–1596.
- 36 Y. Kimura, Y. Tamura and T. Kita, Appl. Phys. Lett., 2008, 92, 012105.
- 37L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, *Nature*, 2014, **508**, 373–377.