Intrinsic Valley Polarization in 2D Magnetic MXenes: Surface Engineering Induced Spin-valley Coupling

Shuo Li ${ }^{\text {a }}$, Junjie He ${ }^{\text {a,b }}$, Lukáš Grajciar ${ }^{\text {a }}$, and Petr Nachtigall ${ }^{\text {a* }}$
a Department of Physical and Macromolecular Chemistry \& Charles University Center of Advanced Materials, Faculty of Science, Charles University, Hlavova 8, 12843 Prague 2, Czech Republic
b Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
* Corresponding Author: Petr Nachtigall
E-mail: petr.nachtigall@natur.cuni.cz

Fig. S1 Ferromagnetic (FM) and antiferromagnetic (AFM) states for $\mathrm{Cr}_{2} \mathrm{C}$ MXenes.

Fig. S2 (a) The high symmetry points of the first Brillouin zone for the band structure of $\mathrm{Cr}_{2} \mathrm{C}$ MXenes. (b) Schematic drawing of the band edge structures at two valleys. Down (up) opening parabolas are used to denote valence band maximum (VBM) and conduction band minimum (CBM).

Type III

- C $\odot \mathrm{Cr}$

Type VI

- $\mathrm{X}, \mathrm{X}^{\prime}=\mathrm{F}, \mathrm{Cl}, \mathrm{OH}$ and O

Fig. S3 Four possible types for functionalized $\mathrm{Cr}_{2} \mathrm{C}$ MXenes.

Fig. S4 Total potential energy of MXenes as a function of simulation time for $\mathrm{Cr}_{2} \mathrm{CX}_{2}$ and $\mathrm{Cr}_{2} \mathrm{COX}$ MXenes by using ab-initio molecular dynamics (300K) in 9 ps.

Fig. S5 Phonon spectra for $\mathrm{Cr}_{2} \mathrm{CX}_{2}$ and $\mathrm{Cr}_{2} \mathrm{COX}$ MXenes

Fig. S6 Spin polarized charge densities on (a) $\mathrm{Cr}_{2} \mathrm{CCl}_{2}$ and $\mathrm{Cr}_{2} \mathrm{COCl}$ and (b) $\mathrm{Cr}_{2} \mathrm{C}(\mathrm{OH})_{2}$ and $\mathrm{Cr}_{2} \mathrm{CO}(\mathrm{OH})$ MXenes, where spin-up and spin-down densities are shown in yellow and blue, respectively. The isosurface is $0.045 \mathrm{e} \cdot \mathrm{Bohr}^{-3}$. Electron localization functions (ELF) on (c) $\mathrm{Cr}_{2} \mathrm{CCl}_{2}$ and $\mathrm{Cr}_{2} \mathrm{COCl}$ and (d) $\mathrm{Cr}_{2} \mathrm{C}(\mathrm{OH})_{2}$ and $\mathrm{Cr}_{2} \mathrm{CO}(\mathrm{OH})$ MXenes. The color scale (from 0 to 1) shows the probability. The partial electronic density of states (PDOS) of (e) $\mathrm{Cr}_{2} \mathrm{COCl}$ and (f) $\mathrm{Cr}_{2} \mathrm{CO}(\mathrm{OH})$ MXenes.

Fig. S7 Band structures of $\mathrm{Cr}_{2} \mathrm{CX}_{2}$ at HSE06 level. Spin-up and spin-down bands are respectively denoted by black and pink lines.

Fig. S8 (a) Band structures at HSE06 level. Spin-up and spin-down bands are respectively denoted by black and pink lines. (b) Band structures with spin-orbit coupling (SOC). (c) Orbital projected band structures with SOC. Red, black and blue circles represent $d_{y z}+d_{x z}, d_{x^{2}-y^{2}}+d_{x y}$ and $d_{z^{2}}$ orbital composition. The sizes of the dots denote the weight of contribution. Note that each d orbital of Cr atoms in mixed MXenes was not further analyzed.

Fig. S9 Spin polarized charge densities on (a) ferrimagnetic (FIM) $\mathrm{Cr}_{2} \mathrm{CO}_{0.75} \mathrm{~F}_{1.25}$ (b) ferromagnetic (FM) $\mathrm{Cr}_{2} \mathrm{CO}_{1.25} \mathrm{~F}_{0.75}$ MXenes, where spin-up and spin-down densities are shown in yellow and blue, respectively. The isosurface is $0.045 \mathrm{e} \cdot \mathrm{Bohr}^{-3}$.

Fig. S10 Berry curvatures of $\mathrm{Cr}_{2} \mathrm{COCl}, \mathrm{Cr}_{2} \mathrm{CO}(\mathrm{OH})$ and $\mathrm{Cr}_{2} \mathrm{CO}_{1.25} \mathrm{~F}_{0.75}$ along high-symmetry points (a) and in the full Brillouin zone (b). Unit of Berry curvatures is \AA^{2}.

Fig. S11 Band structures of $\mathrm{Cr}_{2} \mathrm{COX}$ with spin-orbit coupling (SOC) at HSE06 level. The black arrows in circles show the magnetization direction (θ) in the xz plane from -90 to 90.

Fig. S12 Orbital projected band structures of Cr_{2} COF MXene with SOC when (a) $\theta=45$ and (b) $\theta=0$. Red, black and blue circles represent $d_{y z}+d_{x z},{ }^{d} x^{2}-y^{2}+d_{x y}$ and ${ }^{d^{2}}$ orbital composition. The sizes of dots denote the weight of contribution.

Fig. S13 Specific heat $\left(C_{V}\right)$ calculated for $\mathrm{Cr}_{2} \mathrm{CX}_{2}, \mathrm{Cr}_{2} \mathrm{COX}$ and mixed $\mathrm{Cr}_{2} \mathrm{C}$ MXenes with respect to the temperature.

Fig. S14 (a) Spin polarized charge densities and electron localization functions. Spin-up and spin-down densities are shown in yellow and blue, respectively. The isosurface is $0.045 \mathrm{e} \cdot \mathrm{Bohr}^{-3}$. The color scale (from 0 to 1) shows the probability. (b) Band structures at HSE06 level. Spin-up and spin-down bands are respectively denoted by black and pink lines. (c) Band structures with spin-orbit coupling (SOC). (d) Orbital projected band structures with SOC. Red, black and blue circles represent $d_{y z}+d_{x z}$, $d_{x^{2}-y^{2}}+d_{x y}$ and $d_{z^{2}}$ orbital composition. The sizes of dots denote the weight of contribution. (e) Berry curvatures in the full Brillouin zone. Unit of Berry curvatures is \AA^{2}.

Table S1 Four types of functionalization adsorption sites on $\mathrm{Cr}_{2} \mathrm{CX}_{2}$ and Janus $\mathrm{Cr}_{2} \mathrm{COX}$ MXenes. The most stable type is set up to zero for each MXenes.

MXenes	Type I	Type II	Type III	Type VI
$\mathrm{Cr}_{2} \mathrm{CF}_{2}$	0.52	0.00	0.17	$/$
$\mathrm{Cr}_{2} \mathrm{CCl}_{2}$	0.56	0.00	0.23	$/$
$\mathrm{Cr}_{2} \mathrm{C}(\mathrm{OH})_{2}$	2.64	0.00	0.13	$/$
$\mathrm{Cr}_{2} \mathrm{COF}$	0.40	0.00	0.22	0.33
$\mathrm{Cr}_{2} \mathrm{COCl}$	0.82	0.00	0.59	0.38
$\mathrm{Cr}_{2} \mathrm{COOH}$	0.21	0.00	0.12	0.21

Table S2 Calculated structural and magnetic characteristics of $\mathrm{Cr}_{2} \mathrm{CX}_{2}$ and Janus $\mathrm{Cr}_{2} \mathrm{COX}$ MXenes. L is the lattice constant (\AA). Cr-C and $\mathrm{Cr}-\mathrm{X}\left(\mathrm{X}^{\prime}\right)$ are bond lengths (\AA). Magnetic states include ferromagnetic (FM) and antiferromagnetic (AFM) states. M is magnetic moment $\left(\mu_{\mathrm{B}}\right) . J_{1}, J_{2}$ and J_{3} are coupling constants (meV). T_{C} / T_{N} stands for the Curie and Neel temperatures (K). Band gaps are in spin-up and spin-down channels (eV). $\Delta K_{V B M}$ and $\Delta K_{C B M}$ stands for the valley splitting (meV).

MXenes	L (\AA)	$\mathrm{Cr}-\mathrm{C}$	$\mathrm{Cr}-\mathrm{X}\left(\mathrm{X}^{\prime}\right)$	Magnetic states	$\mathrm{M}(\mathrm{Cr})$	J_{I}	J_{2}	J_{3}	T_{C} / T_{N}	Gaps	$\Delta K_{V B M}$	$\Delta K_{\text {CBM }}$
										Up/down		
$\mathrm{Cr}_{2} \mathrm{CF}_{2}$	3.01	2.05	2.12	AFM	± 2.65	62.14	22.11	56.07	3830	$3.40 / 3.40$	1	1
$\mathrm{Cr}_{2} \mathrm{CCl}_{2}$	3.13	2.02	2.46	AFM	± 2.74	181.39	61.79	78.4	6095	2.28/2.28	1	1
$\mathrm{Cr}_{2} \mathrm{C}(\mathrm{OH})_{2}$	3.02	1.99	2.14 (Cr-OH)	AFM	± 2.79	154.83	32.01	53.74	6095	1.55/1.55	1	1
		$1.99\left(\mathrm{Cr}_{\mathrm{F}}-\mathrm{C}\right)$	2.11 (Cr-F)		$2.90\left(\mathrm{Cr}_{\mathrm{F}}\right)$							
$\mathrm{Cr}_{2} \mathrm{COF}$	2.94			FM		24.61	31.46	14.64	1146	0.40/3.46	334	421
		2.17 ($\left.\mathrm{Cr}_{\mathrm{O}}-\mathrm{C}\right)$	$1.92(\mathrm{Cr}-\mathrm{O})$		$2.56\left(\mathrm{Cr}_{\mathrm{O}}\right)$							
		$1.96\left(\mathrm{Cr}_{\mathrm{Cl}}-\mathrm{C}\right)$	$2.44(\mathrm{Cr}-\mathrm{Cl})$		$2.75\left(\mathrm{Cr}_{\mathrm{Cl}}\right)$							
$\mathrm{Cr}_{2} \mathrm{COCl}$	2.98			FM		14.37	50.55	8.74	622	/2.54	-149	-139
		2.10 ($\left.\mathrm{Cr}_{\mathrm{O}}-\mathrm{C}\right)$	1.95 (Cr-O)		2.57 (Cr_{O})							
		$1.99\left(\mathrm{Cr}_{\mathrm{OH}}-\mathrm{C}\right)$	$2.12(\mathrm{Cr}-\mathrm{OH})$		$2.84\left(\mathrm{Cr}_{\mathrm{OH}}\right)$							
$\mathrm{Cr}_{2} \mathrm{COOH}$	2.95			FM		24.02	32.01	6.44	983	/3.26	45	140
		2.16 ($\left.\mathrm{Cr}_{\mathrm{O}}-\mathrm{C}\right)$	1.93 (Cr-O)		$2.59\left(\mathrm{Cr}_{\mathrm{O}}\right)$							

Table S3 Calculated structural and magnetic characteristics of two mixed MXenes. L is the lattice constant (\AA). Magnetic states include ferromagnetic (FM) and ferrimagnetic (FIM) states. T_{C} / T_{N} stands for the Curie and Neel temperatures (K). Band gaps are in spin-up and spin-down channels (eV). $\Delta K_{V B M}$ and $\Delta K_{C B M}$ stands for the valley splitting (meV).

MXenes	$\mathrm{L}(\AA)$	Magnetic states	T_{C} / T_{N}	Gaps		
			Up/down	$\Delta K_{V B M}$	$\Delta K_{C B M}$	
$\mathrm{Cr}_{2} \mathrm{CO}_{0.75} \mathrm{~F}_{1.25}$	5.96	FIM	1648	$0.97 / 0.46$	11	11
$\mathrm{Cr}_{8} \mathrm{C}_{4} \mathrm{O}_{1.25} \mathrm{~F}_{0.75}$	5.75	FM	314	$0.31 / 2.66$	15	-12

