Epitaxial growth of β -Ga₂O₃ (-201) thin film on fourfold symmetry CeO₂ (001) substrate for heterogeneous integrations

Xiao Tang¹*, Kuang-Hui Li¹, Che-Hao Liao¹, Dongxing Zheng², Chen Liu², Rongyu Lin¹, Na Xiao¹, Shibin Krishna¹, Jose Taµboada¹, Xiaohang Li¹

¹ Advanced Semiconductor Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

² Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

*xiao.tang@kaust.edu.sa

Two dimensional Silvaco Atlas TCAD simulation [1] was carried out to understand the spectral response of Ga₂O₃ thin film PDs grown on CeO₂. The band alignment of the β -Ga₂O₃ and CeO₂ are set exatcly as in the Figure 4. (e). The schematic diagram of the simulated Ga₂O₃ thin film PD grown on CeO₂ is shown in Figure S1. (a). The thickness of the Ga₂O₃ and CeO₂ thin film are set to 300 nm and 20 nm, respectively. The spectral response at a bias of 5V when the beam intensity equals to 20 μ W/cm² and 1 mW/cm² are shown in the **Figure S1.** (b) and (c). Based on our simulation result, the spectral response only shows a single peak around 250 nm when the beam intensity equals to 20 μ W/cm², which agrees with our experimental result. This behavior could be explained by the thickness of the CeO₂ thin film is much less than the above Ga₂O₃ film. Moreoever, by artificially increasing the beam intensity to extremely large value (1 mW/cm²), we can see that an additional peak around 350 nm comes out. Thus, we conclude that only the peak of Ga₂O₃ in our simulated PD spectral response can be observed when the beam intensity equals to 20 μ W/cm².

Figure S1. (a). Schmatic diagram of the simulated Ga_2O_3 thin film PD grown on CeO₂. (b). The spectral resonse at a bias of 5 V under the beam intensity equals to 20 μ W/cm². (c). The spectral resonse at a bias of 5 V under the beam intensity equals to 1 mW/cm².

Reference

[1] Atlas User's Manual, Silvaco, Santa Clara, CA, USA, 2018.