Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Bulk assembly of 0D organic antimony chloride hybrid with highly

efficient orange dual-emission by self-trapped states

Hui Peng,^{a,b,c,d} Ye Tian,^a Xinxin Wang,^a Tao Huang,^b Yonghao Xiao,^d Tiantian Dong,^c Jinming Hu,^a Jianping Wang^{c*} and Bingsuo Zou^{b*}

^aBeijing key laboratory of Nanophotonics and ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China.

^bGuangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key lab of new Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.

^cBeijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^dSchool of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.

*Corresponding Author: E-mail: zoubs@gxu.edu.cn (B.Z.), jwang@iccas.ac.cn (J. W.)

Empirical formula	$C_{24}H_{56}Cl_5N_2Sb$
Formula weight	671.70
Temperature/K	170.0(3)
Crystal system	triclinic
Space group	P-1
a/Å	10.6100(2)
b/Å	10.7418(2)
c/Å	16.2363(3)
α/°	76.000(2)
β/°	74.827(2)
γ/°	72.614(2)
Volume/Å ³	1677.22(6)
Ζ	2
$\rho_{calc}g/cm^3$	1.330
µ/mm ⁻¹	1.235
F(000)	700.0
Crystal size/mm ³	$0.22\times0.21\times0.15$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4.038 to 61.946
Index ranges	$-14 \le h \le 14, -11 \le k \le 15, -23 \le l \le 23$
Reflections collected	25968
Independent reflections	8994 [$R_{int} = 0.0289, R_{sigma} = 0.0311$]
Data/restraints/parameters	8994/0/297
Goodness-of-fit on F ²	1.026
Final R indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0230, wR_2 = 0.0530$
Final R indexes [all data]	$R_1 = 0.0255, wR_2 = 0.0543$
Largest diff. peak/hole / e Å ⁻³	0.42/-0.43

Table S1. Crystal data and structure refinement for (TPA)₂SbCl₅ single crystal.

Atom	x	у	Z	U(eq)
Sb1	6370.9(2)	3778.0(2)	7769.5(2)	22.38(3)
Cl1	7993.3(4)	5246.0(4)	6754.3(2)	30.14(8)
Cl2	4216.4(4)	5738.0(4)	7668.9(3)	42.06(10)
C13	6264.2(4)	3265.6(5)	6460.6(2)	36.97(9)
Cl4	4831.5(4)	2227.0(4)	8562.7(2)	30.90(8)
C15	8433.2(4)	1748.5(4)	7951.0(3)	38.11(9)
N1	6797.0(14)	7895.7(12)	8546.6(8)	27.2(3)
C1	6884.6(18)	6417.4(14)	8793.2(10)	29.6(3)
C2	7041.4(19)	5771.4(16)	9709.0(10)	34.0(3)
C3	7028.1(19)	4317.2(16)	9858.8(11)	36.3(4)
C4	7917.1(17)	8234.3(16)	8795.6(10)	32.4(3)
C5	9335.8(19)	7587(2)	8377.1(14)	45.8(4)
C6	10341(2)	7947(3)	8735.8(16)	60.9(6)
C7	5479.7(17)	8688.1(15)	9017.8(10)	30.2(3)
C8	4204.3(19)	8692.9(19)	8766.0(13)	41.3(4)
C9	2990(2)	9378(2)	9375.7(15)	53.5(5)
C10	6898.1(19)	8234.3(15)	7573.2(9)	31.6(3)
C11	6862(2)	9669.1(16)	7166.6(10)	36.9(4)
C12	7108(3)	9806.3(19)	6195.1(11)	56.6(6)
N2	2235.3(12)	3234.2(13)	6265.2(8)	26.6(3)
C13	2320.4(16)	3289.6(17)	7175.0(9)	30.8(3)
C14	980.3(17)	3760.5(19)	7764.8(10)	35.6(4)
C15	1208.5(19)	3759(2)	8649.6(11)	45.1(4)
C16	1491.2(16)	4561.1(16)	5823.9(10)	29.6(3)
C17	2001(2)	5748.2(18)	5798.3(12)	42.4(4)
C18	1049(2)	6987(2)	5412.1(16)	58.3(6)
C19	1454.6(17)	2246.6(17)	6289.9(11)	34.2(3)
C20	2018(2)	829(2)	6703.9(15)	52.9(5)
C21	1340(3)	-80(2)	6487.5(17)	66.2(7)
C22	3674.6(15)	2842.1(17)	5767.5(10)	30.9(3)
C23	3846.3(19)	2593(2)	4868.0(12)	50.5(5)

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for (TPA)₂SbCl₅ single crystal. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

(24 5200.5(17) 2105(2) 440.0(12) 480.0(5)	C24	5288.5(19)	2165(2)	4444.9(12)	48.6(5)
---	-----	------------	---------	------------	---------

	1001	e 65. Bolia lenguis loi	(1111)250el3 singl	e ei ystai.	
Atom	Atom	Length/Å	Atom	Atom	Length/Å
Sb1	Cl1	2.6543(4)	C10	C11	1.516(2)
Sb1	Cl2	2.6150(4)	C11	C12	1.508(2)
Sb1	C13	2.3582(4)	N2	C13	1.5196(19)
Sb1	Cl4	2.5669(4)	N2	C16	1.516(2)
Sb1	C15	2.6082(4)	N2	C19	1.517(2)
N1	C1	1.5212(19)	N2	C22	1.5155(19)
N1	C4	1.513(2)	C13	C14	1.512(2)
N1	C7	1.519(2)	C14	C15	1.518(2)
N1	C10	1.5161(18)	C16	C17	1.515(2)
C1	C2	1.510(2)	C17	C18	1.519(3)
C2	C3	1.525(2)	C19	C20	1.517(3)
C4	C5	1.509(3)	C20	C21	1.520(3)
C5	C6	1.518(3)	C22	C23	1.503(2)
C7	C8	1.511(2)	C23	C24	1.485(3)
C8	C9	1.516(3)			

Table S3. Bond lengths for (TPA)₂SbCl₅ single crystal.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Cl2	Sb1	Cl1	92.716(13)	C4	C5	C6	109.67(18)
Cl3	Sb1	Cl1	84.465(13)	C8	C7	N1	116.72(13)
C13	Sb1	Cl2	90.301(16)	C7	C8	C9	109.34(16)
Cl3	Sb1	Cl4	87.676(14)	N1	C10	C11	115.65(12)
C13	Sb1	C15	90.974(16)	C12	C11	C10	108.78(14)
Cl4	Sb1	Cl1	172.012(12)	C16	N2	C13	111.48(12)
Cl4	Sb1	Cl2	88.744(14)	C16	N2	C19	106.28(12)
Cl4	Sb1	C15	88.067(13)	C19	N2	C13	110.83(12)
C15	Sb1	Cl1	90.636(13)	C22	N2	C13	106.55(11)
C15	Sb1	Cl2	176.514(14)	C22	N2	C16	110.44(12)
C4	N1	C1	111.53(12)	C22	N2	C19	111.33(12)
C4	N1	C7	106.46(11)	C14	C13	N2	115.03(12)
C4	N1	C10	111.01(12)	C13	C14	C15	109.60(14)
C7	N1	C1	110.99(12)	C17	C16	N2	116.41(13)
C10	N1	C1	105.75(11)	C16	C17	C18	108.31(16)
C10	N1	C7	111.19(12)	C20	C19	N2	115.99(15)
C2	C1	N1	116.63(12)	C19	C20	C21	109.28(19)
C1	C2	C3	109.55(13)	C23	C22	N2	116.18(13)
C5	C4	N1	115.92(14)	C24	C23	C22	112.29(15)
Cl2	Sb1	Cl1	92.716(13)	C4	C5	C6	109.67(18)

Table S4. Bond angles for $(TPA)_2SbCl_5$ single crystal.

Table S4. Comparison of room temperature key photophysical parameters of $(TPA)_2SbCl_5$ with recently reported orange-emitting quantum dots (QDs) or phosphors.

Components	Emission peak (nm)	PLQY(%)	Lifetime (µs)	Pros and cons	Ref.
(TPA) ₂ SbCl ₅	610	95.3	5.3	stable, low-toxic, high	This
				PLQY	work
(OAm) ₂ SnBr ₄	628	60	4.3	easily oxidized	[1]
(DAO)Sn ₂ I ₆ film	634	36	1.114	Water-Stable/low PLQY	[2]
(PMA) ₃ InBr ₆	610	35	~1.25	low-toxic/low PLQY	[3]
(R/S-MBA) ₄ Cu ₄ I ₄	630	52.8/59.7	~15.4/14.9	easily oxidized	[4]
$C_4H_{14}N_2MnBr_4\\$	516, 623	10.39	3.6, 183.2	low-toxic/low PLQY	[5]
$(C_9NH_{20})_2SbCl_5$	590	98	4.2	low-toxic, high PLQY	[6]
$(C_6N_2H_{16})SbCl_5$	613	25.3	1.06	low-toxic/low PLQY	[7]
$(C_6N_2H_{16})SbCl_5 \cdot H_2O$	620	39.6	1.22	low-toxic/low PLQY	[7]
$Cs_2SnCl_6:Sb^{3+}NCs$	438 and 615	8.25	-	low-toxic/low PLQY	[8]
CsPb _{0.835} Mn _{0.165} Cl ₃ QDs	\sim 397 and 615	34	847	Toxic and low PLQY	[9]
Cs ₂ AgInCl ₆ :Mn ²⁺ NCs	620	16	µs level	low-toxic/low PLQY	[10]
Cs ₄ MnBi ₂ Cl ₁₂	610	25.7	144	low-toxic/low PLQY	[11]

Figure S1. Experimental and simulated PXRD patterns of (TPA)₂SbCl₅.

Figure S2. Absolute photoluminescence quantum yield measurement of the (TPA)₂SbCl₅ SCs.

Figure S3. (a) Excitation-wavelength dependent photoluminescence (PL) spectra. (b) The Magnified area of the PL spectra in the wavelength range of 400-520 nm. (c) Emission-wavelength-dependent photoluminescence excitation (PLE) spectra of $(TPA)_2SbCl_5$ SCs at room temperature.

Figure S4. PL and PLE spectra of TPACl at RT. The emission peaks of TPACl

appeared at around 393 nm.

Figure S5. The Commission Internationale de l'Eclairage (CIE) chromaticity diagram of $(TPA)_2SbCl_5$ were calculated to evaluate the emission change quantitively under different excitation wavelength from 300 to 400 nm.

Figure S6. I_{Peak1}/I_{Peak2} extracted from low temperature-dependent PL spectra.

Figure S7. The PL peak position of (TPA)₂SbCl₅ SCs as a function of low temperature.

Figure S8. The FWHM of(TPA)₂SbCl₅ SCs as a function of low temperature.

Figure S9. The PL intensity versus excitation power for (TPA)₂SbCl₅ SCs excited by 405 nm laser at room temperature.

Figure S11. PXRD patterns of $(TPA)_2SbCl_5$ before and after exposure to atmospheric environment (\sim 50 % relative humidity) for three month.

Figure S12. The PL intensity of $(TPA)_2SbCl_5$ SCs at different times (~50 % relative humidity) within three months.

Figure S13. Long-term stability of (TPA)₂SbCl₅ SCs under a 325 nm UV lamp within 5 h.

Figure S14. Long-term stability of WLED when it operates for 5 h.

- 1. L. Hou, Y. Zhu, J. Zhu and Chunzhong Li. Tuning Optical Properties of Lead-Free 2D Tin-Based Perovskites with Carbon Chain Spacers, *J. Phys. Chem. C*, 2019, **123**, 31279-31285.
- I. Spanopoulos, I. Hadar, W. Ke, P. Guo, S. Sidhik, M. Kepenekian, J. Even, A. D. Mohite, R. D. Schaller and M. G. Kanatzidis, *J. Am. Chem. Soc.*, 2020, 142, 9028-9038.
- D. Chen, S. Hao, G. Zhou, C. Deng, Q. Liu, S. Ma, C. Wolverton, J. Zhao and Z. Xia. Lead-Free Broadband Orange-Emitting Zero-Dimensional Hybrid (PMA)₃InBr₆ with Direct Band Gap, *Inorg. Chem.*, 2019, **58**, 22, 15602-15609.
- L. Yao, G. Niu, J. Li, L. Gao, X. Luo, B. Xia, Y. Liu, P. Du, D. Li, C. Chen, Y. Zheng, Z. Xiao and J. Tang, Circularly Polarized Luminescence from Chiral Tetranuclear Copper(I) Iodide Clusters. *J. Phys. Chem. Lett.* **2020**, 11, 1255-1260.
- H. Peng, T. Huang, B. Zou, Y. Tian, X. Wang, Y. Guo, T. Dong, Z. Yu, C. Ding, F. Yang and J. Wang, Organic-Inorganic Hybrid Manganese Bromine Single Crystal with Dual-Band Photoluminescence from Polaronic and Bipolaronic Excitons. *Nano Energy*, 2021, 87, 106166.
- C. Zhou, H. Lin, Y. Tian, Z. Yuan, R. Clark, B. Chen, L. J. van de Burgt, J. C. Wang, Y. Zhou, K. Hanson, Q. J. Meisner, J. Neu, T. Besara, T. Siegrist, E. Lambers, P. Djurovich and B. Ma, Luminescent Zero-Dimensional Organic Metal Halide Hybrids with Near-Unity Quantum Efficiency. *Chem. Sci.*, 2018, 9, 586-593.
- G. Song, M. Li, S. Zhang, N. Wang, P. Gong, Z. Xia and Z. Lin, Enhancing Photoluminescence Quantum Yield in 0D Metal Halides by Introducing Water Molecules. *Adv. Funct. Mater.*, 2020, 30, 2002468.
- 8. Y. Jing, Y. Liu, J. Zhao and Z. Xia, Sb³⁺ Doping-Induced Triplet Self-Trapped Excitons Emission in Lead-Free Cs₂SnCl₆ Nanocrystals. *J. Phys. Chem. Lett.*, 2019, **10**, 7439-7444.
- D. Chen, G. Fang and X. Chen. Silica-Coated Mn-Doped CsPb(Cl/Br)₃ Inorganic Perovskite Quantum Dots: Exciton-to-Mn Energy Transfer and Blue-Excitable Solid-State Lighting. ACS Appl. Mater. Interfaces, 2017, 9, 40477-40487.
- F. Locardi, M. Cirignano, D. Baranov, Z. Dang, M. Prato, F. Drago, M. Ferretti, V. Pinchetti, M. Fanciulli, S. Brovelli, L. D. Trizio and L. Manna. Colloidal Synthesis of Double Perovskite Cs₂AgInCl₆ and Mn-Doped Cs₂AgInCl₆ Nanocrystals. *J. Am. Chem. Soc.*, 2018, **140**, 12989-12995.
- J.-H. Wei, J.-F. Liao, X.-D. Wang, L. Zhou, Y. Jiang and D.-B. Kuang, All-Inorganic Lead-Free Heterometallic Cs₄MnBi₂Cl₁₂ Perovskite Single Crystal with Highly Efficient Orange Emission. *Matter*, 2020, **3**, 892-903.