Supporting Information

Title: Electrical transport properties of EuTe under high pressure

Yuqiang Li,*^{ae} Jingxia Liu, ^{ae} Peiguang Zhang, ^b Qiang Jing, ^c Xiaofeng Liu, ^d Jianxin Zhang, ^a Ningru Xiao, ^e Liyuan Yu^a and Pingjuan Niu*^{ae}

^aTianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of electrical and electronic engineering, Tiangong University, Tianjin 300387, China

^bState Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China

^cLaboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China ^dTianjin San'an Optoelectronics Co., LTD., Tianjin 300384, China

^eEngineering Research Center of High Power Solid State Lighting Application System of Ministry of Education, Tiangong University, Tianjin 300387, China

Corresponding authors:

Yuqiang Li^{*ae} Phone: +86-22-83955488; Email: liyuqiang@tiangong.edu.cn Pingjuan Niu^{*ae}: Phone: +86-22-83955639; Email: niupingjuan@tiangong.edu.cn

Supplementary Tables

Lattice Parameters	a	b	с	Reference
Experimental	6.59	6.59	6.59	ref. ²⁵
GGA-PBE	6.67	6.67	6.67	this work

Table S1 EuTe geometry optimization results

As showed in Table S1, the lattice parameters a, b, and c of EuTe of after geometry optimization by CASTEP at atmospheric pressure are given. The relative error of the lattice parameters is about 1.2% compared with the experimental value, which is within the permissible range of the error, indicating the reasonableness and accuracy of this theoretical calculation.

Item	Experimental parameter
Sputtering method	Radio Frequency Magnetron
	Sputtering.
Sputtering target	Molybdenum
Operating gas	Argon
Sputtering time	300 s
Substrate temperature	573 K
Argon flux	40 sccm
Operating pressure	1.0 Pa
Substrate distance	5 cm
Sputtering power	90 W

 Table S2 The sputtering parameters of molybdenum film

Item	Experimental parameter
Photolithography method	Contact photolithography
Photoresist type	Positive photoresist
Coating rate	4000 rpm
Prebake time	480~600 s
Prebake temperature	373K
Developing solution	NaOH (0.5%)
Exposure source	Mercury lamp
Exposure time	50~70 s
Postbake time	480~600 s
Postbake temperature	373 K

 Table S3 The parameters of photolithography process

 $\label{eq:table_state} \textbf{Table S4} \ \textbf{The sputtering parameters of alumina film}$

Item	Experimental parameter
Sputtering method	Reactive sputtering
Sputtering target	Aluminum (99.99%)
Operating gas	Argon and Oxygen
Sputtering time	4 h
Substrate temperature	573 K
Oxygen flux	2.4 sccm
Argon flux	30 sccm
Operating pressure	1.0 Pa
Substrate distance	5 cm
Sputtering power	90 W

Supplementary Figures

Fig. S1 Energy band of EuTe (NaCl) at 12.5 GPa.

The energy band is a visual representation of the change in electronic structure. In (Fig. S1), at 12.5 GPa, the spin-up energy band crosses the Fermi plane, while the spin-down does not. This is a direct evidence that EuTe still maintains its semimetallic nature.

Fig. S2 Density of states under different pressure.

The density of states at different pressures reflects a changing trend. In (Fig. S2), the density of states of EuTe weakly decreases with increasing pressure, and more small density of states peaks are added in the conduction band part, which proves the weakening of crystal localization.

Fig. S3 Density of states of NaCl and CsCl structures at 13 GPa.

The change in the density of states is an indication that the pressure changes the electronic structure. In (Fig. S3), at 13 GPa, the density of states of the CsCl structure is weakened compared to the density of states of the NaCl structure at the Fermi energy level, which is caused by the decrease in the density of states of the Te atoms.