Electronic Supplementary Information

Axial and helical thermally activated delayed fluorescence bicarbazole emitters: Opposite modulation of circularly polarized luminescence through intramolecular charge-transfer dynamics

Patthira Sumsalee,^a Laura Abella,^b Thierry Roisnel,^a Sabrina Lebrequier,^c Grégory Pieters,^c Jochen Autschbach^{b,*}, Jeanne Crassous^a and Ludovic Favereau^{a,*}

^a Univ Rennes, CNRS, ISCR-UMR 6226, ScanMAT–UMS 2001, F-35000 Rennes, France. E-mails: ludovic.favereau@univ-rennes1.fr.

^b Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA. E-mail: jochena@buffalo.edu.

^c Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.

Table of Contents

A.	General methods	S2
В.	Synthetic procedures	S 3
C.	Steady-state photophysical chiroptical characterizations	S9
D.	X-Ray experimental data	S17
E.	HPLC separation	S19
F.	NMR spectra	S35
G.	Theoretical calculations	S42
H.	References	S58

A. General methods

¹H and ¹³C NMR spectra were recorded at room temperature on an *AVANCE III 400 BRUKER* or an *AVANCE I 500 BRUKER* at Centre Régional de Mesures Physiques de l'Ouest (CRMPO), Université de Rennes 1. Chemical shifts δ are given in ppm and coupling constants *J* in Hz. Chemical shifts for ¹H NMR spectra are referenced relative to residual protium in the deuterated solvent (δ = 7.26 ppm, CDCl₃). ¹³C shifts are referenced to CDCl₃ peaks at δ = 77.16 ppm.

High-resolution mass (HR-MS) determinations were performed at CRMPO on a Bruker MaXis 4G by ASAP (+ or -) or ESI and MALDI with CH_2Cl_2 as solvent techniques. Experimental and calculated masses are given with consideration of the mass of the electron.

UV-Visible (UV-vis, in M^{-1} cm⁻¹) absorption spectra were recorded on a UV-2401PC Shimadzu spectrophotometer.

Steady-state luminescence spectra were measured using an Edinburgh FS920 Steady State Fluorimeter combined with a FL920 Fluorescence Lifetime Spectrometer. The spectra were corrected for the wavelength dependence of the detector, and the quoted emission maxima refer to the values after correction. Life-times measurements were conducted with 375 nm diode laser excitation (EPL-series) plugged to a TCSPC pulsed source interface. Absolute fluorescence quantum yields ϕ were recorded with a Hamamatsu C9920-03 integrating sphere.

Electrochemical measurements were performed with a potentiostat PGSTAT 302N controlled by resident GPES (General Purpose Electrochemical System 4.9) software using a conventional single auxiliary electrode were platinum electrode potassium chloride calomel electrode (SCE). The supporting electrolyte was 0.1 N Bu₄NPF₆ (tetrabutylammonium hexafluorophosphate) in dichloromethane and solutions were purged with argon before the measurements. All potentials are quoted r experiments, the scan rate was either 100, 200 or 400 mV/s.

Electronic circular dichroism (ECD, in M⁻¹ cm⁻¹) was measured on a Jasco J-815 Circular Dichroism Spectrometer (IFR140 facility - Biosit - Université de Rennes 1).

The circularly polarized luminescence (CPL) measurements were performed using a home-built CPL spectrofluoropolarimeter (constructed with the help of the JASCO Company). The samples were excited using a 90° geometry with a Xenon ozone-free lamp 150 W LS. The following parameters were used: emission slit width \approx 2 mm, integration time = 4 sec, scan speed = 50 nm/min, accumulations = 10. The concentration of all the samples was ca. 10⁻⁶ M.

Thin-layer chromatography (TLC) was performed on aluminum sheets precoated with Merck 5735 Kieselgel 60F254. Column chromatography was carried out with Merck 5735 Kieselgel 60F (0.040-0.063 mm mesh). Chemicals were purchased from Sigma-Aldrich, Alfa Aesar or TCI Europe and used as received.

B. Synthetic procedures

BICOL was prepared following the previously reported procedure.¹ Bis-iodo Axial BICOL, **Ax1**, and Bis-iodo helical BICOL, **Hel1**, were obtained by iodination reaction using the following procedure: In round bottom flask, a mixture of axial or helical BICOL (100 mg, 1 eq.) in CHCl₃/CH₃COOH 6:3 ml was stirred at 0 °C under argon. N-iodosuccinimide (1.8 eq.) was slowly added and stirred at 0 °C. After 5 hours (the reaction was followed by thin layer chromatography), the resulting mixture was then purified through a flash column using CHCl₃ as the eluent. The desired compound was finally obtained as a white solid in 89%. The product was directly used in the next step without characterization.

Hel-*o***-CHO**, **Hel-***o***-CN**, **Ax-***o***-CHO**, **Ax-***p***-CN** and **Hel-***p***-CN** were synthesized by using Suzuki cross coupling reactions with corresponding arylboronic acids.

(±)-2,2'-(3,3'-dimethoxy-9,9'-dimethyl-9H,9'H-[4,4'-bicarbazole]-6,6'-diyl)dibenzaldehyde: (±)-Ax-*o*-CHO

In a dried Schlenck, 3,6-diiodo-axial BICOL (0.23 g, 0.34 mmol), 2-cyanophenyl boronic acid (0.21 g, 1.37 mmol), K_2CO_3 (0.31g, 2.30 mmol) were dissolved in a mixture of DMF (12 mL) and water (4 mL) under argon. The mixture was degassed by argon bubbling for 15 minutes before Pd(PPh₃)₄ (0.079 g, 0.07 mmol) was added and the resulting solution refluxed for 8 hours. After cooling down to room temperature, the reaction was poured into 20 mL of water and the organic layer was extracted 3 times with methylene chloride (3*20 mL) and thus washed with brine (20 mL) and dried over MgSO₄. Solvents were removed under vacuum and the product was purified by chromatography (EtOAc/heptane, 25:75) to give white product 86%.

¹**H NMR (400 MHz, chloroform-d (CDCl**₃) δ 9.42 (s, 2H), 7.91 (dd, *J* = 7.8, 1.5 Hz, 2H), 7.52 – 7.46 (m, 2H), 7.46 – 7.39 (m, 4H), 7.39 – 7.36 (m, 2H), 7.34 (dd, *J* = 8.4, 1.8 Hz, 4H), 7.15 (dd, *J* = 7.8, 1.2 Hz, 2H), 6.52 (d, *J* = 1.8 Hz, 2H), 3.94 (s, 6H), 3.81 (s, 6H).

¹³**C NMR** (400 MHz, **chloroform-d** (**CDCl**₃) δ 192.3, 151.1, 146.9, 141.6, 137.2, 135.2 – 116.4, 116.7 – 95.5, 57.8, 29.5.

HR-MS Q-Exactive, ESI, 370 °C; ion $[M+Na]^+$, $C_{42}H_{32}N_2O_4Na$ m/z calculated 651.22543, m/z experimental 651.2250 (Δ =1 ppm).

Experimental optical rotation values

(+)-**Ax-***o*-**CHO**: $[\alpha]_D^{25} = +98 \pm 2\%$, $[\phi]_D^{25} = +613$ (c = 1.3×10^{-3} , CHCl₃). (-)-**Ax-***o*-**CHO**: $[\alpha]_D^{25} = -96 \pm 2\%$, $[\phi]_D^{25} = -603$ (c = 1.2×10^{-3} , CHCl₃).

(±)-2,2'-(8,17-dimethyl-8,17-dihydro-[1,3]dioxepino[4,5-c:7,6-c']dicarbazole-11,14-diyl)dibenzaldehyde: (±)-**Hel-***o***-CHO**

Following the same procedure than **Ax-***o***-CHO**, **Hel-***o***-CHO** was obtained as a yellow solid in 68% yield.

¹**H NMR (400 MHz, chloroform-d (CDCl**₃) δ 9.19 (s, 2H), 7.81 (dd, *J* = 7.4, 1.9 Hz, 2H), 7.62 – 7.55 (m, 2H), 7.55 – 7.48 (m, 4H), 7.39 – 7.30 (m, 8H), 7.03 (d, *J* = 1.8 Hz, 2H), 5.69 (s, 2H), 4.04 (s, 6H).

¹³C NMR (400 MHz, chloroform-d (CDCl₃) δ 191.9, 146.5, 141.6, 139.3, 133.1, 132.7, 131.5, 128.4, 127.6, 126.8, 124.9, 122.2, 120.7, 119.3, 109.4, 108.2, 103.8, 29.4.

HR-MS Q-Exactive, ESI, 370 °C; ion $[M+Na]^+$, $C_{42}H_{32}N_2O_5Na$ m/z calculated 667.22034, m/z experimental 667.2195 (Δ =0 ppm).

Experimental optical rotation values

(+)-**Hel**-*o*-**CHO**: $[\alpha]_D^{25} = +129 \pm 2\%$, $[\phi]_D^{25} = +790$ (c = 1.3×10^{-3} , CHCl₃). (-)-**Hel**-*o*-**CHO**: $[\alpha]_D^{25} = -132 \pm 2\%$, $[\phi]_D^{25} = -808$ (c = 1.2×10^{-3} , CHCl₃).

(±)-2,2'-(8,17-dimethyl-8,17-dihydro-[1,3]dioxepino[4,5-c:7,6-c']dicarbazole-11,14-diyl)dibenzonitrile: (±)-**Hel**-*o*-**CN**

Following the same procedure than **Ax-***o***-CHO**, **Hel-***o***-CN** was obtained as a yellow solid in 52% yield.

¹**H NMR (400 MHz, chloroform-d (CDCl₃)** δ 7.70 (dd, *J* = 8.5, 1.8 Hz, 2H), 7.62 – 7.58 (m, 2H), 7.58 – 7.51 (m, 6H), 7.24 – 7.18 (m, 4H), 7.09 (d, *J* = 1.8 Hz, 2H), 5.70 (s, 2H), 5.63 – 5.56 (m, 2H), 4.04 (s, 6H).

¹³C NMR (**400** MHz, chloroform-d (CDCl₃) δ 146.8, 146.1, 141.8, 139.4, 133.1, 131.8, 130.2, 128.5, 126.5, 125.2, 122.7, 120.9, 119.1, 110.7, 109.4, 107.4, 103.9, 30.2.

HR-MS Q-Exactive, ESI, 370 °C; ion $[M+Na]^+$, $C_{41}H_{26}N_4O_2Na$ m/z calculated 629.1948, m/z experimental 629.1954 (Δ =1 ppm).

Experimental optical rotation values

(+)-**Hel**-*o*-**CN**: $[\alpha]_D^{25} = +232 \pm 2\%$, $[\phi]_D^{25} = +1405$ (c = 1.3×10^{-3} , CHCl₃). (-)-**Hel**-*o*-**CN**: $[\alpha]_D^{25} = -228 \pm 2\%$, $[\phi]_D^{25} = -1381$ (c = 1.2×10^{-3} , CHCl₃).

(±)-4,4'-(3,3'-dimethoxy-9,9'-dimethyl-9H,9'H-[4,4'-bicarbazole]-6,6'-diyl)dibenzonitrile: (±)-Ax-p-CN

Following the same procedure than **Ax-o-CHO**, **Ax-p-CN** was obtained as a yellow solid in 86% yield.

¹**H NMR (400 MHz, chloroform-d (CDCl**₃) δ 7.58 (m, 8H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.36 (d, *J* = 8.5 Hz, 2H), 7.25 – 7.18 (m, 4H), 6.85 (dd, *J* = 1.9, 0.6 Hz, 2H), 3.95 (s, 6H), 3.8 (s, 6H).

¹³**C NMR** (**400 MHz**, **chloroform-d** (**CDCl**₃) δ 151.56, 146.36, 142.15, 137.47, 132.25, 128.78, 126.80, 124.57, 123.40, 122.31, 120.67, 119.70 (d, *J* = 96.4 Hz), 112.83, 109.15, 108.54 (d, *J* = 9.9 Hz), 58.06.

HR-MS Q-Exactive, ESI, 370 °C; ion $[M+Na]^+$, $C_{42}H_{30}N_4O_2Na$ m/z calculated 645.2261, m/z experimental 645.2254 (Δ =1 ppm).

Experimental optical rotation values

(+)-**Ax-***p*-**CN**: $[\alpha]_D^{25} = +136 \pm 2\%$, $[\phi]_D^{25} = +846$ (c = 1.3×10^{-3} , CHCl₃). (-)-**Ax-***p*-**CN**: $[\alpha]_D^{25} = -132 \pm 2\%$, $[\phi]_D^{25} = -822$ (c = 1.2×10^{-3} , CHCl₃). (±)-4,4'-(8,17-dimethyl-8,17-dihydro-[1,3]dioxepino[4,5-c:7,6-c']dicarbazole-11,14-diyl)dibenzonitrile: (±)-**Hel**-*p*-**CN**

Following the same procedure than Ax-o-CHO, Hel-p-CN was obtained as a white solid in 74% yield.

¹**H NMR (400 MHz, chloroform-d (CDCl₃)** δ 7.63 (d, *J* = 8.7 Hz, 2H), 7.59 – 7.51 (m, 4H), 7.48 (dd, *J* = 8.5, 1.8 Hz, 2H), 7.42 – 7.34 (m, 6H), 7.20 (dd, *J* = 1.8, 0.6 Hz, 2H), 6.93 – 6.17 (m, 2H), 5.71 (s, 2H), 4.10 (s, 6H).

¹³C NMR (**400** MHz, chloroform-d (CDCl₃) δ 146.7, 141.8, 139.4, 131.8, 129.5, 127.2, 125.3, 123.5, 122.7, 120.9, 119.6, 119.0, 109.4, 108.0, 103.9, 29.6.

HR-MS Q-Exactive, ESI, 370 °C; ion $[M+Na]^+$, $C_{42}H_{30}N_4O_2Na$ m/z calculated 629.1948, m/z experimental 629.1947 (Δ =0 ppm).

Experimental optical rotation values

(+)-**Hel**-*p*-**CN**: $[\alpha]_D^{25} = +618 \pm 2\%, [\phi]_D^{25} = +3749 \text{ (c} = 1.3 \times 10^{-3}, \text{CHCl}_3\text{)}.$ (-)-**Hel**-*p*-**CN**: $[\alpha]_D^{25} = -626 \pm 2\%, [\phi]_D^{25} = -3797 \text{ (c} = 1.2 \times 10^{-3}, \text{CHCl}_3\text{)}.$

Figure S1. a): ¹H NMR portion of **Ax**-*o*-**CHO**, **Hel**-*o*-**CHO** and **CBz**-*o*-**CHO** spectra showing the shielding of the aldehydic proton signal owing to the current ring effect induced by the opposite carbazole unit (not present on the model compound **CBz**-*o*-**CHO**). b): ¹H NMR portion of **Hel**-*o*-**CHO** recorded in deuterated chloroform (red top spectrum) and toluene (brown bottom spectrum).

2-(6-methoxy-9-methyl-9H-carbazol-3-yl)benzaldehyde: CBz-o-CHO

In a dried Schlenck, 3-iodo-6-methoxy carbazole (0.35 g, 1.038 mmol), 2-formylphenyl boronic acid (0.47 g, 3.115 mmol), K_2CO_3 (0.60 g, 4.15 mmol) were dissolved in a mixture of DMF (15 mL) and water (5 mL) under argon. The mixture was degassed by argon bubbling for 15 minutes before Pd(dppf)Cl₂ (0.1038 g, 0.07 mmol) was added and the resulting solution refluxed for 8 hours. After cooling down to room temperature, the reaction was poured into 20 mL of water and the organic layer was extracted 3 times with methylene chloride (3*20 mL) and thus washed with brine (20 mL) and dried over MgSO₄. Solvents were removed under vacuum and the product was purified by chromatography (EtOAc/heptane, 25:75) to give white product 52%.

¹**H** NMR (400 MHz, methylene chloride-d (CD₂Cl₂) δ 10.08 (s, 1H), 8.11 (d, *J* = 1.3 Hz, 1H), 8.06 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.73 (td, *J* = 7.5, 1.5 Hz, 1H), 7.67 – 7.63 (m, 2H), 7.54 (t, *J* = 2.2 Hz, 3H), 7.42 (d, *J* = 8.9 Hz, 1H), 7.20 (dd, *J* = 8.9, 2.5 Hz, 1H), 3.95 (s, 3H), 3.92 (s, 3H).

¹³C NMR (400 MHz, methylene chloride-d (CD₂Cl₂) δ 192.6, 153.9, 146.9, 141.2, 136.6, 134.0, 133.3, 131.3, 127.8, 127.3, 127.0, 122.7, 122.5, 121.9, 115.4, 109.5, 108.5, 103.1, 55.9, 31.8, 29.2, 29.0, 22.6, 13.8.

C. Steady-state photophysical and chiroptical characterizations

Figure S2. Left: UV-vis spectra of **Hel-***o***-CHO** (red), **Hel-***o***-CN** (blue), **Ax-***o***-CHO** (black), **Ax-***p***-CN** (green) and **Hel-***p***-CN** (purple) measured in toluene (~ 10^{-5} M) at 298 K, and right: their corresponding bicarbazole precursors measured in chloroform (~ 10^{-5} M) at 298 K.

Figure S3. Normalized luminescence spectra of **Hel-***o***-CHO** (red), **Hel-***o***-CN** (blue), **Ax-***o***-CHO** (black), **Ax-***p***-CN** (green) and **Hel-***p***-CN** (purple) measured in toluene (~10⁻⁵ M) at 298 K.

Figure S4. Normalized luminescence spectra of **Hel-***o***-CHO** (red), **Hel-***o***-CN** (blue), **Ax-***o***-CHO** (black), **Ax-***p***-CN** (green) and **Hel-***p***-CN** (purple) measured in chloroform (~10⁻⁵ M) at 298 K.

Figure S5. Normalized luminescence spectra of **Hel-***b***rGHO** (red), **Hel-***o***-CN** (blue), **Ax-***o***-CHO** (black), **Ax-***p***-CN** (green) and **Hel-***p***-CN** (purple) measured in dimethylformamide (~10⁻⁵ M) at 298 K.

Figure S6. Normalized luminescence spectrum of **Ax-o-CHO** in 2-methyltetrahydrofuran at 77 K and excited at 375 nm (the onset of both fluorescence (F) and phosphorescence (P) emissions are taken to estimate the singlet and triplet energy levels).

Figure S7. Left: Normalized luminescence spectrum of **Hel-o-CHO** in 2-methyltetrahydrofuran at 77 K and excited at 375 nm (the onset of both fluorescence (F) and phosphorescence (P) emissions are taken to estimate the singlet and triplet energy levels). Right: Luminescence decays of (+)-**Hel**-*o*-**CHO** (black signal, corresponding fits in red) recording under vacuum in solid matrix (bis[2-(diphenylphosphino)phenyl] ether oxide, DPEPO) with an inset focusing on the short lifetime decays.

Figure S8. Normalized luminescence spectrum of **Hel-***o***-CN** in 2-methyltetrahydrofuran at 77 K and excited at 360 nm (the onset of both fluorescence (F) and phosphorescence (P) emissions are taken to estimate the singlet and triplet energy levels).

Figure S9. Normalized luminescence spectrum of **Ax-***p***-CN** in 2-methyltetrahydrofuran at 77 K and excited at 360 nm (the onset of both fluorescence (F) and phosphorescence (P) emissions are taken to estimate the singlet and triplet energy levels).

Figure S10. Normalized luminescence spectrum of **Hel**-*p*-**CN** in 2-methyltetrahydrofuran at 77 K and excited at 360 nm (the onset of both fluorescence (F) and phosphorescence (P) emissions are taken to estimate the singlet and triplet energy levels).

Figure S11. ECD spectra of **Hel-o-CHO** (red), **Hel-o-CN** (blue), **Ax-o-CHO** (black), **Ax-p-CN** (green) and **Hel-p-CN** (purple) measured in toluene (~10⁻⁵ M) at 298 K.

Figure S12. CPL spectra of **Hel-***o***-CHO** (red), **Hel-***o***-CN** (blue), **Ax-***o***-CHO** (black), **Ax-***p***-CN** (green) and **Hel-***p***-CN** (purple) measured in toluene (~10⁻⁵ M) at 298 K.

Figure S13. CPL spectra of **Hel-***o***·CHO** (red), **Hel-***o***·CN** (blue), **Ax-***o***·CHO** (black), **Ax-***p***·CN** (green) and **Hel-***p***·CN** (purple) measured in chloroform (~10⁻⁵ M) at 298 K.

Figure S14. CPL spectra of **Hel-***o***·CHO** (red), **Hel-***o***·CN** (blue), **Ax-***o***·CHO** (black), **Ax-***p***·CN** (green) and **Hel-***p***·CN** (purple) measured in dimethylformamide (~10⁻⁵ M) at 298 K.

Compound	λ _{abs} Tol ^a (onset	g _{Abs} ^a Tol	λ _{em} Tol (nm) /	λ _{em} CHCl ₃ (nm) /	λ _{em} DMF (nm) /	τ _{Fluo} c [ns]	g _{lum} (×10 ⁻³)		
	in nm)	(×10 ⁻³)	ф _{fluo} ^b (%)	φ _{fluo} b (%)	ф _{fluo} ^b (%)		Tol	CHCl₃	DMF
Hel-o-CHO	410	0.0	439 / 2	477 / 7	490 / 6	2.6 / 10.8 (8 / 36 / 804) ^d	~ 0.0	2.0	1.6
Hel-o-CN	375	0.6	435 / 20	435 / 10	455 / 13	4.0	0.5	0.5	0.4
Hel-p-CN	401	2.0	438 / 17	438 / 15	444 / 20	2.7	2.5	2.5	3.0
Ax-o-CHO	415	1.0	460 / 3	531/4	543 / 2	3.1 (8.4 / 71/ 1040) ^d	1.0	0.7	0.5
Ax-p-CN	390	2.2	412 / 25	436 / 37	461/84	3.8	1.5	1.4	1.1

Table S1. Summary of the photophysical and chiroptical data for Hel-*o*-CHO, Hel-*o*-CN, Ax-*o*-CHO, Ax-*p*-CN and Hel-*p*-CN.

^a In toluene solution. ^b Absolute quantum yield (error \pm 10 %), measured using an integrating sphere (Tol for toluene, CHCl₃ for chloroform and DMF for dimethylformamide). ^c Fluorescence lifetime measured in dichloromethane solution (error \pm 5 %) and weight in parenthesis. ^d Lifetimes measured in DPEPO matrix.

Table S2. Electrochemical data for **Hel**-*o*-**CHO**, **Hel**-*o*-**CN**, **Ax**-*o*-**CHO**, **Ax**-*p*-**CN** and **Hel**-*p*-**CN**. The redox potentials are referenced *versus* saturated calomel electrode (SCE) and given in V with Fc/Fc^+ as an internal reference and 0.1 M Bu₄NPF₆ in dichloromethane as the electrolyte.

Compound	Hel-o-CHO	Hel-o-CN	Hel-p-CN	Ax-o-CHO	Ax-p-CN
E ¹ ox	1.17	1.21	1.21	0.95	0.98
E ² ox	1.39	1.39	1.19	1.19	1.19

Figure S15. ECD spectra of (+)-**Hel**-*p*-**CN** (solid lines) and (-)-**Hel**-*p*-**CN** (dashed lines) in toluene (blue) and in dimethylformamide (red) (~10⁻⁵ M) at 298 K.

D. X-Ray experimental data

Empirical formula	C43H33C13N2O4
CCDC number	2085967
Extended formula	C ₄₂ H ₃₂ N ₂ O ₄ ;CHCl ₃
Formula weight	748.06 g/mol
Temperature	150(2) K
Radiation type	Mo-K_
Wavelength	0.71073 Å
Crystal system, space group	triclinic, P 1
Unit cell dimensions	a = 8.9208 (12) Å
	b = 13.4572 (16) Å
	c = 15.7062 (19) Å
	$\alpha = 107.913 (4)^{\circ}$
	$\beta = 91.259(5)^{\circ}$
	$\Upsilon = 95.152 (4)^{\circ}$
Volume	1784.4(4) Å ³
Z, Calculated density	2, 1.392 g.cm ⁻³
Absorption coefficient	0.305 mm ⁻¹
F(000)	776
Crystal size	0.550 x 0.350 x 0.210 mm
Crystal color	yellow
Crystal description	prism
Diffractometer	APEXII Kappa-CCD diffractometer
	θ range for data collection 2.403 to
	27.538° _
$(\sin\theta = \lambda)_{\max} (\text{Å}^{-1})$	0.651
h _{min} , h _{max}	-11, 11
k _{min} , k _{max}	-12, 17
l _{min} , l _{max}	-20, 19
Reflections collected / unique	$29926 / 8200 [^{a}R(int) = 0.0439]$
Reflections $[I > 2\sigma]$	6634
Completeness to θ max	0.994
Absorption correction type	multi-scan
Max. and min. transmission	0.938, 0.890
Refinement method	Full-matrix least-squares on F ²
H-atom treatment	H-atom parameters constrained
Data / restraints / parameters	8200 / 0 / 473
^b Goodness-of-fit	0.992
Final R indices $[I > 2\sigma]$	$^{c}R1 = 0.0402, \ ^{d}wR2 = 0.1117$
R indices (all data)	$^{c}R1 = 0.0529, ^{d}wR2 = 0.1231$
Δρmax, Δρmin	$0.459, -0.593 \text{ e.Å}^{-3}$

Figure S16. ORTEP diagrams of compound Ax-o-CHO with ellipsoids at 50% probability)at 150 K(.

E. HPLC separation

С	Conditions Analytiques :				Date : 03/0 Opérateur : LEB Domandour : DIST			
с	olonr	ne :	CHIRALPAK IG 2	50 x 4,6 mm, 5μm			Encadran	t : PIETERS Grégory
D	ébit :		4 mL/min				Encouron	the field of the offer
D	étecti	ion :	200-400 nM Ma	xAbs	Conditions Pr	ep:		
te p	empér ressi	rature on BPR	40°C - 120bars		Colonne :	CHIRALPA	AK IG 250 :	x 21 mm, 5µm
S	Solvant :		A : CO2		Débit :	80 mL/mi	n	
F			B : i-PrOH		Détection :	200-400 r	nM MaxAb	DS
Γ	C I I I		Isocratique		temperature	40°C - 100) bars	
	Gra	adient :	%A : 65	%B : 35	Solvant :	A · CO2		
					Solvant.	B · i-PrOH	1	
						Isocratio	le	
					Gradient :	%A : 65	%B	: 35
Ρ	rofil	de puri	fication :			/411.00	700	
2rternaliy [j.M]	0000 -	10 20 20	40 50 60 70 1	0 5,0 10,0 11,0 12,0 12,0 1	H0 130 min 120 min 130 200	21.0 22.0 22.0	240 250 2	Ar All Ar 22,0 22,0 22,0 22,0 22,0 22,0 22,0 22,
[JPU]	225000 220000 180000 140000 140000 100000 8000 8000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 80000 8000 8000 8000 80000 8000 8000 8000 8000000		40 8,0	8,0 10,0 12,0	140 10.0 10.0 20.	0 22.0	240 27	CH-9 [PANABE (210.0-400.0 mm)]
viergth [m]	210 229 240 260 289 300		e 1001 3,40e 1001 4,86e 10	24 0.32±1001 7.75±1001 9.23±10	Retorison Time (mr)	1,51c+005 1.00	= = = = = = = = = = = = = = = = = = =	15 1.916 +005 2.106 +005 2.246 +005
Mareland	320 240 390 380 400	0,0 2,0	4,0 6,0	6,0 10,0 12,0	14-0 10-0 True 12-0 20,	o 22,0	24,0 24	vo 20,0 30,0 32,0

Vérification des énantiomères

Figure S17. Chiral HPLC of Ax-*o*-CHO.

Conditions A	analytiques :					
Colonne :	CHIRALPAK I	G 250 x 4,6 mm, 5μm	n			
Débit :	4 mL/min	4 mL/min				
Détection :	200-400 nM	200-400 nM MaxAbs				
température pression BPR	40°C - 120ba	40°C - 120bars				
Solvant :	A : CO2					
	B:i-PrOH					
	Isocratique	Isocratique				
Gradient :	%A : 55	%B:45				

	Demandeu Encadrant :	r : PIETERS Grégory : PIETERS Grégory					
Conditions P	Prep :						
Colonne :	CHIRALPAK IG	250 x 21 mm, 5μm					
Débit :	80 mL/min						
Détection :	200-400 nM N	200-400 nM MaxAbs					
température pression BPR	40°C - 100 bar	S					
Solvant :	A : CO2						
	B:i-PrOH						
Cradient	Isocratique						
Gradient :	%A:55 %B:45						

Date :

Opérateur :

17/05/2021

LEBREQUIER Sabrina

Profil de purification :

Vérification des énantiomères

25

Figure S18. Chiral HPLC of Hel-*o*-CHO.

Conditions A	nalytiques :					
Colonne :	CHIRALPAK IG 2	50 x 4,6 mm, 5	μm			
Débit :	4 mL/min	4 mL/min				
Détection :	200-400 nM Ma	200-400 nM MaxAbs				
température pression BPR	40°C - 120bars	40°C - 120bars				
Solvant :	A : CO2					
	B:i-PrOH/DCM	20/20				
Gradiant	Isocratique	Isocratique				
Gradient:	%A : 60	%B : 40				

	Opérateur : Demandeur : Encadrant :	LEBREQUIER S PIETERS Grégo PIETERS Grégo	Sabrina ory ory			
Conditions P	Prep :					
Colonne :	CHIRALPAK IG 25	50 x 21 mm, 5μι	n			
Débit :	80 mL/min					
Détection :	200-400 nM Max	k Abs				
température pression BPR	40°C - 100 bars					
Solvant :	A : CO2					
	B:i-PrOH/DCM	20/20				
Cradiant	Isocratique	Isocratique				
Gradient :	%A:60	%B:40				

Date : 17/05/2021

Profil de purification :

Vérification des énantiomères

E1

Figure S19. Chiral HPLC of Ax-o-CN.

Conditions A	nalytiques :					
Colonne :	CHIRALPAK IG 2	CHIRALPAK IG 250 x 4,6 mm, 5μm				
Débit :	4 mL/min	4 mL/min				
Détection :	200-400 nM MaxAbs					
température pression BPR	40°C - 120bars	40°C - 120bars				
Solvant :	A : CO2	A : CO2				
	B : i-PrOH					
Gradient	Isocratique	Isocratique				
Gradient :	%A : 60	%B : 40				

	Opérateur : Demandeur : Encadrant :	LEBREQUIER Sabrina PIETERS Grégory PIETERS Grégory			
Conditions P	rep :				
Colonne :	CHIRALPAK IG 2	50 x 21 mm, 5μm			
Débit :	80 mL/min				
Détection :	200-400 nM Ma	xAbs			
température pression BPR	40°C - 100 bars				
Solvant :	A : CO2				
	B:i-PrOH				
Cradient	Isocratique	Isocratique			
Gradient :	%A : 70	%B : 30			

17/05/2021

Date :

Conditions analytiques : Racémique avant purification :

Vérification des énantiomères

Figure S20. Chiral HPLC of Hel-*p*-CN.

F. NMR spectra

Figure S21. ¹H NMR spectrum of Ax-*o*-CHO in CDCl₃ at 298 K (400 MHz).

Figure S22. ¹³C NMR spectrum of Ax-*o*-CHO in CDCl₃ at 298 K (101 MHz).

Figure S23. ¹H NMR spectrum of Hel-o-CHO in CDCl₃ at 298 K (400 MHz).

Figure S24. ¹³C NMR spectrum of Hel-o-CHO in CDCl₃ at 298 K (101 MHz).

Figure S25. ¹H NMR spectrum of Hel-*o*-CN in CDCl₃ at 298 K (400 MHz).

Figure S26. ¹³C NMR spectrum of Hel-o-CN in CDCl₃ at 298 K (101 MHz).

Figure S27. ¹H NMR spectrum of Ax-*p*-CN in CDCl₃ at 298 K (400 MHz).

Figure S29. ¹H NMR spectrum of Hel-*p*-CN in CDCl₃ at 298 K (400 MHz).

Figure S30. ¹³C NMR spectrum of Hel-*p*-CN in CDCl₃ at 298 K (101 MHz).

Figure S31. ¹H NMR spectrum of CBz-CHO in CD₂Cl₂ at 298 K (400 MHz).

Figure S32. ¹H NMR spectrum of CBz-CHO in CD₂Cl₂ at 298 K (101 MHz).

G. Theoretical calculations

All computations were performed by using Kohn-Sham Density functional theory (DFT) as implemented in the Gaussian (G16) package,² along the PBE0 functional³ and the def2-SV(P) basis.⁴ Solvent effects were included by means of the polarizable continuum model (PCM)⁵ for toluene and dimethylformamide (DMF) to match the experimental conditions. Dispersion corrections from Grimme 'D3' were considered in the calculations.⁶

The 200 lowest-energy vertical spin-allowed electronic excitations were calculated for the absorption and electronic circular dichroism (ECD) spectra. In order to simulate the spectral envelopes, the transitions were subsequently Gaussian-broadened with $\sigma = 0.20$ eV. For overviews of the theoretical approach to model natural optical activity by quantum chemical calculations, esp. via TD-DFT, see, for example, References [7,8].⁷

Figure S33. Optimized molecular structures of (+)-Hel-*o*-CHO, (+)-Hel-*o*-CN, (+)-Ax-*o*-CHO, (+)-Ax-*p*-CN and (+)-Hel-*p*-CN.

Figure S34. (Left) Calculated absorption and (right) ECD spectra of (±)-**Ax**-*o*-**CHO**. Selected transitions and, oscillator and rotatory strengths are indicated as 'stick spectra'. Predominant transitions for (+)-**Ax**-*o*-**CHO** are numbered according to Table S3.

Excitation	E [eV]	λ [nm]	f	R [10 ⁻⁴⁰ cgs]	occ. no.	unocc no.	%
#1	3.107	399	0.092	30.04	165(H)	166(L)	45
#4	3.150	394	0.105	122.46	164	167	47
#15	4.121	301	0.045	-242.43	165	170	34
#16	4.134	300	0.169	138.83	165	171	24
					164	170	17
#19	4.341	286	0.610	843.43	163	168	23
#20	4.361	284	0.140	-161.49	161	166	10
					163	168	10
#21	4.362	284	0.111	-273.45	161	167	11
#22	4.384	283	0.115	-286.56	162	168	22
					161	167	12
#25	4.591	270	0.059	-287.31	163	169	42
#26	4.628	268	0.366	337.27	162	169	41

Table S3. Selected excitations and occupied (occ)-unoccupied (unocc) MO pair contributions (greater than 10%) for (+)-**Ax-o-CHO** with toluene. H and L indicate the HOMO and LUMO, respectively.

Figure S35. Isosurfaces (± 0.035 au) of Molecular Orbitals (MOs) for (+)-**Ax-***o***-CHO** (toluene). Values listed in parentheses are the corresponding orbitals energies in eV.

Figure S36. Calculated UV/Vis (left) and ECD (right) spectra of (±)-Hel-*o*-CHO. Selected transitions and, oscillator and rotatory strengths are indicated as 'stick spectra'. Predominant transitions for (+)-Hel-*o*-CHO are numbered according to Table S4.

Excitation	E [eV]	λ [nm]	f	R [10 ⁻⁴⁰ cgs]	occ. no.	unocc no.	%
#2	3.341	371	0.132	2.69	160(H)	162	40
#3	3.396	365	0.073	255.78	159	161(L)	38
#4	3.425	362	0.139	-57.71	160	163	35
#13	4.065	305	0.058	171.98	158	163	26
#16	4.205	295	0.159	-264.00	160	164	22
					160	165	16
#17	4.261	291	0.143	175.17	159	164	20
#18	4.316	287	0.101	102.58	159	165	36
#19	4.371	284	0.203	-60.92	160	166	40
#26	4.759	261	0.222	169.06	158	164	32
#27	4.780	259	0.138	-4.95	157	164	22

Table S4. Selected excitations and occupied (occ)-unoccupied (unocc) MO pair contributions (greater than 10%) for (+)-**Hel**-*o*-**CHO** with toluene. H and L indicate the HOMO and LUMO, respectively.

Figure S37. Isosurfaces (± 0.035 au) of Molecular Orbitals (MOs) for (+)-**Hel-***o***-CHO** (toluene). Values listed in parentheses are the corresponding orbitals energies in eV.

Excitation	E [eV]	λ [nm]	f	R [10 ⁻⁴⁰ cgs]	occ. no.	unocc no.	%
#2	3.329	372	0.148	119.22	160	162	26
					160(H)	161(L)	17
#3	3.405	364	0.045	180.67	160	163	29
#4	3.423	262	0.114	-34.31	159	162	40
#15	4.185	296	0.133	-60.07	160	164	13
#16	4.235	293	0.067	153.45	159	164	31
#17	4.271	290	0.221	-370.98	160	165	36
#18	4.352	285	0.100	282.69	159	165	40
#19	4.400	282	0.100	52.79	160	166	40
#22	4.532	274	0.144	-251.38	159	166	38
#27	4.778	259	0.328	360.77	158	164	42

Table S5. Selected excitations and occupied (occ)-unoccupied (unocc) MO pair contributions (greater than 10%) for (+)-**Hel**-*o*-**CHO** with DFM. H and L indicate the HOMO and LUMO, respectively.

MO158 -6.508

MO159 -5.991

MO160 (H) -5.842

Figure S38. Isosurfaces (± 0.035 au) of Molecular Orbitals (MOs) for (+)-**Hel-***o*-**CHO** (**DMF**). Values listed in parentheses are the corresponding orbitals energies in eV.

Figure S39. Calculated UV/Vis (left) and ECD (right) spectra of (±)-Hel-*o*-CN. Selected transitions and, oscillator and rotatory strengths are indicated as 'stick spectra'. Predominant transitions for (+)-Hel-*o*-CN are numbered according to Table S6.

Excitation	E [eV]	λ [nm]	f	R [10 ⁻⁴⁰ cgs]	occ. no.	unocc no.	%
#1	3.414	363	0.077	108.34	158(H)	160	46
#2	3.529	351	0.049	-126.88	158	159(L)	47
#3	3.587	346	0.191	63.20	158	161	48
#5	3.663	338	0.109	193.05	157	159	48
#7	4.046	306	0.080	391.05	155	160	34
#10	4.144	299	0.089	-151.96	156	159	22
#11	4.148	299	0.144	-262.99	158	162	18
#14	4.236	293	0.109	308.73	157	162	20
					158	163	17
#17	4.344	285	0.142	-30.66	157	164	34
#18	4.410	281	0.181	-308.64	157	163	42

Table S6. Selected excitations and occupied (occ)-unoccupied (unocc) MO pair contributions (greater than 10%) for (+)-**Hel-***o*-**CN** with toluene. H and L indicate the HOMO and LUMO, respectively.

Figure S40. Isosurfaces (± 0.035 au) of Molecular Orbitals (MOs) for (+)-**Hel-***o***-CN** (**toluene**). Values listed in parentheses are the corresponding orbitals energies in eV.

Figure S41. Calculated UV/Vis (left) and ECD (right) spectra of (±)-**Ax**-*p*-**CN**. Selected transitions and, oscillator and rotatory strengths are indicated as 'stick spectra'. Predominant transitions for (+)-**Ax**-*p*-**CN** are numbered according to Table S7.

Excitation	E [eV]	λ [nm]	f	R [10 ⁻⁴⁰ cgs]	occ. no.	unocc no.	%
#1	3.350	370	0.200	392.81	163(H)	165	27
					163	166	19
#2	3.396	365	0.096	-588.51	163	164(L)	48
#3	3.481	356	0.610	413.28	163	166	26
#9	4.067	305	0.102	-585.58	161	164	26
#10	4.084	304	0.810	737.25	161	165	24
#13	4.247	292	0.211	199.03	161	166	34
#21	4.640	267	0.066	-264.83	161	167	41
#27	4.940	251	0.418	427.80	163	170	39

Table S7. Selected excitations and occupied (occ)-unoccupied (unocc) MO pair contributions (greater than 10%) for (+)-**Ax-***p*-**CN** with toluene. H and L indicate the HOMO and LUMO, respectively.

Figure S42. Isosurfaces (± 0.035 au) of Molecular Orbitals (MOs) for (+)-Ax-*p*-CN (Toluene). Values listed in parentheses are the corresponding orbitals energies in eV.

Excitation	E [eV]	λ [nm]	f	R [10 ⁻⁴⁰ cgs]	occ. no.	unocc no.	%
#1	3.327	373	0.271	466.59	163(H)	165	35
#2	3.358	369	0.086	-532.28	163	164(L)	48
#3	3.451	359	0.313	305.76	162	164	47
#4	3.473	357	0.040	-218.15	162	165	47
#5	3.488	355	0.245	86.26	163	166	34
#9	4.042	307	0.093	-575.91	161	164	27
#10	4.066	305	0.824	664.72	161	165	27
#13	4.267	291	0.216	252.49	161	166	39
#21	4.633	268	0.065	-263.98	161	167	39
#27	4.944	251	0.403	426.93	163	170	38

Table S8. Selected excitations and occupied (occ)-unoccupied (unocc) MO pair contributions (greater than 15%) for (+)-**Ax-***p***-CN** with DFM. H and L indicate the HOMO and LUMO, respectively.

Figure S43. Isosurfaces (± 0.035 au) of Molecular Orbitals (MOs) for (+)-**Ax**-*p*-**CN** (**DMF**). Values listed in parentheses are the corresponding orbitals energies in eV.

Figure S44. Calculated UV/Vis (left) and ECD (right) spectra of (\pm) -Hel-*p*-CN. Selected transitions and, oscillator and rotatory strengths are indicated as 'stick spectra'. Predominant transitions for (+)-Hel-*p*-CN are numbered according to Table S8.

Table S8. Selected excitations and occupied (occ)-unoccupied (unocc) MO pair contributions (greater	than
10%) for (+)-Hel-p-CN with toluene. H and L indicate the HOMO and LUMO, respectively.	

Excitation	E [eV]	λ [nm]	f	R [10 ⁻⁴⁰ cgs]	occ. no.	unocc no.	%
#1	3.366	368	0.044	102.37	158(H)	160	48
#2	3.518	352	0.160	-331.09	158	159(L)	49
#5	3.627	342	0.540	755.04	157	159	37
#6	3.697	335	0.179	-439.87	157	161	40
#7	4.015	309	0.238	-392.92	156	160	39
#8	4.023	308	0.119	520.71	155	160	45
#9	4.072	304	0.150	-215.00	158	162	24
#10	4.113	301	0.110	15.69	156	159	35
#14	4.324	287	0.235	43.96	157	162	22
					155	161	22

Figure S45. Isosurfaces (± 0.035 au) of Molecular Orbitals (MOs) for (+)-**Hel**-*p*-**CN** (**toluene**). Values listed in parentheses are the corresponding orbitals energies in eV.

Excitation	E [eV]	λ [nm]	f	R [10 ⁻⁴⁰ cgs]	occ. no.	unocc no.	%
#1	3.366	368	0.044	102.37	158(H)	160	48
#2	3.518	352	0.160	-331.09	158	159(L)	49
#5	3.627	342	0.540	755.04	157	159	37
#6	3.697	335	0.179	-439.87	157	161	40
#7	4.015	309	0.238	-392.92	156	160	39
#8	4.023	308	0.119	520.71	155	160	45
#9	4.072	304	0.150	-215.00	158	162	24
#10	4.113	301	0.110	15.69	156	159	35
#14	4.324	287	0.235	43.96	157	162	22
					155	161	22

Table S9. Selected excitations and occupied (occ)-unoccupied (unocc) MO pair contributions (greater than 10%) for (+)-**Hel**-*p*-**CN** with toluene. H and L indicate the HOMO and LUMO, respectively.

Figure S46. Isosurfaces (± 0.035 au) of Molecular Orbitals (MOs) for (+)-**Hel-***p***-CN (DMF**). Values listed in parentheses are the corresponding orbitals energies in eV.

H. References

- 1 S. Kasemthaveechok, L. Abella, M. Jean, M. Cordier, T. Roisnel, N. Vanthuyne, T. Guizouarn, O. Cador, J. Autschbach, J. Crassous and L. Favereau, *J. Am. Chem. Soc.*, 2020, **142**, 20409-20418.
- 2 G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, J. R. C. M. A. Robb, G. Scalmani, V. Barone, H. N. G. A. Petersson, X. Li, M. Caricato, A. V. Marenich, B. G. J. J. Bloino, R. Gomperts, B. Mennucci, H. P. Hratchian, A. F. I. J. V. Ortiz, J. L. Sonnenberg, D. Williams-Young, F. L. F. Ding, F. Egidi, J. Goings, B. Peng, A. Petrone, D. R. T. Henderson, V. G. Zakrzewski, J. Gao, N. Rega, W. L. G. Zheng, M. Hada, M. Ehara, K. Toyota, R. Fukuda, M. I. J. Hasegawa, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, K. T. T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, M. J. B. F. Ogliaro, J. J. Heyd, E. N. Brothers, K. N. Kudin, T. A. K. V. N. Staroverov, R. Kobayashi, J. Normand, A. P. R. K. Raghavachari, J. C. Burant, S. S. Iyengar, M. C. J. Tomasi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, R. L. M. J. W. Ochterski, K. Morokuma, O. Farkas, and D. J. F. J. B. Foresman, *Journal*, 2016. URL: www.gaussian.com.
- 3 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.
- 4 aF. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297-3305; bF. Weigend, *Phys. Chem. Chem. Chem. Phys.*, 2006, **8**, 1057-1065.
- 5 G. Scalmani and M. J. Frisch, J. Chem. Phys., 2010, 132, 114110.
- 6 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 7 aJ. Autschbach, L. Nitsch-Velasquez and M. Rudolph, *Top. Curr. Chem.*, 2011, **298**, 1-98; bM. Srebro-Hooper and J. Autschbach, *Annu. Rev. Phys. Chem.*, 2017, **68**, 399-420.