Electronic Supporting Information for

BN-Substituted Coronene Diimide–Triphenylamine Donor-Acceptor-Donor Triads: Photophysical and (Spectro)-Electrochemical Studies and Lewis Behavior

Jonas Hoffmann,^{a,b,c} Denis Jaquemin,^d Muriel Hissler,^c and Anne Staubitz^{a,b*}

*E-mail: muriel.hissler@univ-rennes1.fr, staubitz@uni-bremen.de

- a. University of Bremen, Institute for Analytic and Organic Chemistry, Leobener Straße 7, D-28359 Bremen, Germany
- b. University of Bremen, MAPEX Center for Materials and Processes, Bibliothekstraße 1, D-28359 Bremen, Germany
- c. Université Rennes 1, CNRS, ISCR-UMR 6226, 263 Av. Général Leclerc, F-35042 Rennes, France
- d. Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France

Table of Content

List of Abbreviations7
General Methods and Materials9
Analyses
Chemicals and Solvents
Chromatography11
Syntheses
Perylene-3,4,9,10-tetra- <i>n</i> -butylester (PTBE)13
1,7-Dibromoperylene-3,4,9,10-tetra- <i>n</i> -butylester (1,7-DB-PTBE)14
1,7-Dibromoperylene-3,4,9,10-tetracaboxylic dianhydride (1,7-DB-PTCDA) 14
1,7-Dibromo-N,N'-di(cyclohexyl)perylene-3,4,9,10-tetracaboxylic acid diimide (1,7-DB-
PDI ^{Cy})15
1,7-Dibromo- <i>N,N</i> '-bis(di <i>iso</i> propylphenyl)-perylene-3,4,9,10-tetracaboxylic acid
diimide (1,7-DB-PDI ^{Dip})16
1,7-Di(<i>n</i> -hexylamino)- <i>N,N</i> '-di(cyclohexyl)perylene-3,4,9,10-tetracaboxylic acid diimide
(1,7-DHA-PDI^{Cy}) 17
1,7-Di(<i>n</i> -hexylamino)- <i>N,N</i> '-bis(2,6-di(<i>iso</i> proypyl)phenyl)perylene-3,4,9,10-
tetracaboxylic acid diimide (1,7-DHA-PDI ^{Dip})18
1,7-Di(<i>n</i> -hexylamino)- <i>N,N</i> '-di(<i>n</i> -hexyl)perylene-3,4,9,10-tetracaboxylic acid diimide
(1,7-DHA-PDI^{Hex}) 19
2-(Trimethylsilyl)thiophene (TphTMS) 20
Dichloro-2-thienyl borane (TphBCl ₂)20
4-(Trimethylsilyl)triphenylamine (TPATMS)21
1,7-Di(<i>n</i> -hexyl)-6,12-di(phenyl)-1,12,6,7-di([1,2]azaborinine)- <i>N,N</i> '-
di(cyclohexyl)perylene-3,4,9,10-tetracarboxylic acid diimide (Ph-BNCDI ^{Cy})
1,7-Di(<i>n</i> -hexyl)-6,12-di(phenyl)-1,12,6,7-di([1,2]azaborinine)- <i>N,N</i> '-bis(2,6-
di(<i>iso</i> proypyl)phenyl)perylene-3,4,9,10-tetracarboxylic acid diimide (Ph-BNCDI ^{Dip}) 23

	1,7-Di(<i>n</i> -hexyl)-6,12-di(phenyl)-1,12,6,7-di([1,2]azaborinine)- <i>N,N</i> '-di(<i>n</i> -
	hexyl)perylene3,4,9,10-tetracarboxylic acid diimide (Ph-BNCDI ^{Hex})
	1,7-Di(<i>n</i> -hexyl)-6,12-di(thiophen-2-yl)-1,12,6,7-di([1,2]azaborinine)- <i>N,N</i> '-
	di(cyclohexyl)perylene-3,4,9,10-tetracarboxylic acid diimide (Tph-BNCDI ^{Cy})25
	1,7-Di(<i>n</i> -hexyl)-6,12-di(thiophen-2-yl)-1,12,6,7-di([1,2]azaborinine)- <i>N,N</i> '-bis(2,6-
	di(<i>iso</i> proypyl)phenyl)perylene-3,4,9,10-tetracarboxylic acid diimide (Tph-BNCDI ^{Dip}) 26
	1,7-Di(<i>n</i> -hexyl)-6,12- <i>bis</i> (4-(diphenylamino)phenyl)-1,12,6,7- <i>di</i> ([1,2]azaborinine)- <i>N,N</i> '-
	di(cyclo-hexyl)perylene-3,4,9,10-tetracarboxylic acid diimide (TPA-BNCDI ^{Cy})27
	1,7-Di(<i>n</i> -hexyl)-6,12- <i>bis</i> (4-(diphenylamino)phenyl)-1,12,6,7-di([1,2]azaborinine)- <i>N,N</i> '-
	bis(2,6-di(<i>iso</i> proypyl)phenyl)perylene-3,4,9,10-tetracarboxylic acid diimide (TPA-
	BNCDI ^{Dip})
NMF	Spectra
	Perylene-3,4,9,10-tetra-n-butylester (PTBE)
	1,7-Dibromoperylene-3,4,9,10-tetra- <i>n</i> -butylester (1,7-DB-PTBE)
	1,7-Dibromoperylene-3,4,9,10-tetracaboxylic dianhydride (1,7-DB-PTCDA)
	1,7-Dibromo-N,N'-dicyclohexylperylene-3,4,9,10-tetracaboxylic acid diimide (1,7-DB-
	PDI ^{Cy})
	1,7-Dibromo- <i>N,N</i> '-(Di <i>iso</i> propylphenyl)-perylene-3,4,9,10-tetracaboxylic acid diimide
	(1,7-DB-PDI ^{Dip})
	1,7-Di(<i>n</i> -hexylamino)- <i>N,N</i> '-di(cyclohexyl)perylene-3,4,9,10-tetracaboxylic acid diimide
	(1,7-DHA-PDI ^{Cy})
	1,7-Di(<i>n</i> -hexylamino)- <i>N,N</i> '-bis(2,6-di <i>iso</i> propylphenyl)perylene-3,4,9,10-tetracaboxylic
	acid diimide (1,7-DHA-PDI ^{Dip})
	1,7-Di(<i>n</i> -hexylamino)- <i>N,N</i> '-di(<i>n</i> hexyl)perylene-3,4,9,10-tetracaboxylic acid diimide
	(1,7-DHA-PDI ^{Hex})
	2-(Trimethylsilyl)thiophene (TphTMS)
	Dichloro-2-thienyl borane (TphBCl ₂)40
	4-(Trimethylsilyl)triphenylamine (TPATMS)

1,7-Di(<i>n</i> -hexyl)-6,12-di(phenyl)-1,12,6,7-di([1,2]azaborinine)- <i>N,N</i> '-
di(cyclohexyl)perylene-3,4,9,10-tetracarboxylic acid diimide (Ph-BNCDI ^{Cy})44
1,7-Di(<i>n</i> -hexyl)-6,12-di(phenyl)-1,12,6,7-di([1,2]azaborinine)- <i>N,N</i> '-bis(2,6-
di <i>iso</i> propylphenyl)perylene-3,4,9,10-tetracarboxylic acid diimide (Ph-BNCDI ^{Dip})47
1,7-Di(<i>n</i> -hexyl)-6,12-di(phenyl)-1,12,6,7-di([1,2]azaborinine)- <i>N,N</i> '-di(<i>n</i> -
hexyl)perylene3,4,9,10-tetracarboxylic acid diimide (Ph-BNCDI ^{Hex})50
1,7-Di(<i>n</i> -hexyl)-6,12-di(thiophen-2-yl)-1,12,6,7-di([1,2]azaborinine)- <i>N,N</i> '-
di(cyclohexyl)perylene-3,4,9,10-tetracarboxylic acid diimide (Tph-BNCDI ^{Cy})53
1,7-Di(<i>n</i> -hexyl)-6,12-di(thiophen-2-yl)-1,12,6,7-di([1,2]azaborinine)- <i>N,N</i> '-bis(2,6-
diisopropylphenyl)perylene-3,4,9,10-tetracarboxylic acid diimide (Tph-BNCDI ^{Dip})56
1,7-Di(<i>n</i> -hexyl)-6,12- <i>bis</i> (4-(diphenylamino)phenyl)-1,12,6,7- <i>di</i> ([1,2]azaborinine)- <i>N,N</i> '-
dicyclo-hexylperylene-3,4,9,10-tetracarboxylic acid diimide (TPA-BNCDI ^{cy})59
1,7-Di(<i>n</i> -hexyl)-6,12- <i>bis</i> (4-(diphenylamino)phenyl)-1,12,6,7-di([1,2]azaborinine)- <i>N,N</i> '-
bis(2,6-di <i>iso</i> propylphenyl)perylene-3,4,9,10-tetracarboxylic acid diimide (TPA-
BNCDI ^{Dip})
UV/Vis, Fluorescence and Excitation
Overview
Ph-BNCDI^{Cy}
Ph-BNCDI ^{Dip}
Ph-BNCD ^{Hex}
Ph-BNCD ^{Hex}
Ph-BNCD ^{Hex}
Ph-BNCD ^{Hex}
Ph-BNCD ^{Hex} 66 Tph-BNCDI ^{Cy} 67 Tph-BNCDI ^{Dip} 67 TPA-BNCDI ^{Cy} 68 TPA-BNCDI ^{Dip} 69
Ph-BNCD ^{Hex} 66 Tph-BNCDI ^{Cy} 67 Tph-BNCDI ^{Dip} 67 TPA-BNCDI ^{Cy} 68 TPA-BNCDI ^{Dip} 69 Solvent-dependency for TPA-BNCDIs 70
Ph-BNCD ^{Hex} 66 Tph-BNCDI ^{Cy} 67 Tph-BNCDI ^{Dip} 67 TPA-BNCDI ^{Cy} 68 TPA-BNCDI ^{Dip} 69 Solvent-dependency for TPA-BNCDIs 70 Electrochemistry 70
Ph-BNCD ^{Hex} 66 Tph-BNCDI ^{Cy} 67 Tph-BNCDI ^{Dip} 67 TPA-BNCDI ^{Cy} 68 TPA-BNCDI ^{Dip} 69 Solvent-dependency for TPA-BNCDIs 70 Electrochemistry 70 Overview 70

Ph-BNCDI ^{cy} Reduction71
Ph-BNCDI ^{Cy} Reduction72
Ph-BNCDI ^{Dip} Oxidation72
Ph-BNCDI ^{Dip} Reduction73
Ph-BNCDI ^{Dip} Reduction 273
Ph-BNCDI ^{Hex} Oxidation74
Ph-BNCDI ^{Hex} Reduction74
Tph-BNCDI^{Cy} Oxidation 75
Tph-BNCDI ^{Cy} Reduction75
Tph-BNCDI^{Dip} Oxidation 76
Tph-BNCDI^{Dip} Reduction 76
Tph-BNCDI ^{Dip} Reduction 277
TPA-BNCDI^{Cy} Oxidation 77
TPA-BNCDI ^{cy} Reduction
TPA-BNCDI ^{cy} Complete Redox78
TPA-BNCDI^{Dip} Oxidation
TPA-BNCDI ^{Dip} Reduction79
TPA-BNCDI ^{Dip} Reduction 280
TPA-BNCDI ^{Dip} Redox80
Thermogravimetric Analysis (TGA)81
Spectroelectrochemical Experiments
Lewis Behavior
Solvent Interactions
Rehm-Weller Equation
Computational Details and TICT search
Literature

List of Abbreviations

ΑΡΟ	Atmospheric pressure chemical ionization			
ATR	Attenuated total reflection			
aq.	Aqueous			
br (IR)	3road signal			
br (NMR)	Broad signal			
BBO	Broadband Observe			
CDI	Coronene diimide			
COSY	Correlation spectroscopy			
Су	Cyclohexyl (moiety)			
d (NMR)	Doublet			
Dip	2,6-Diisopropylphenyl (moiety)			
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene			
DCM	Dichloromethane			
dd (NMR)	Doublet of doublet			
DFT	Density functional theory			
DSS	4,4-Dimethyl-4-silapentane-1-sulfonic acid			
EI	Electron ionization			
НМВС	Heteronuclear multiple-bond correlation spectroscopy			
НОМО	Highest occupied molecular orbital			
HRMS	High resolution mass spectrometry			
HSQS	Heteronuclear single-quantum correlation spectroscopy			
IR	Infrared spectroscopy			
LUMO	Lowest unoccupied molecular orbital			
m (IR)	Medium intensity			
m (NMR)	Multiplet			
m _c (NMR)	Multiplet (centered)			
Mp.	Melting point			
NMP	N-Methyl-2-pyrrolidone			
NMR	Nuclear magnetic resonance			
PDI	Perylene diimide			
PeT	Photoinduced electron transfer			
PTCDA	Perylene tetracarboxylic dianhydride			
qd (NMR)	Quartet of doublets			
quin. (NMR)	Quintet			

R_{f}	Retention factor		
s (IR)	Strong intensity		
s (NMR)	Singlet		
sat.	Saturated		
SCE	Standard calomel electrode		
Sept. (NMR)	Septet		
SPS	Solvent purification system		
t (NMR)	Triplet		
TEA	Triethylamine		
ТІСТ	Twisted intramolecular charge transfer		
TLC	Thin-layer chromatography		
TMS	Trimethylsilyl		
ТРА	Triphenylamino		
Tph	Thienyl		
tt (NMR)	Triplet of triplets		
w (IR)	Weak intensity		

General Methods and Materials

All NMR tubes and glassware were dried in an oven at 200 °C overnight before use. If not stated otherwise, all reaction vessels were heated to minimum of 200 °C under a vacuum (1.3×10^{-2} mbar to 6.2×10^{-2} mbar) and purged with nitrogen or argon at least three times before adding the reagents. Syringes were purged with nitrogen or argon three times prior to use. Unless noted otherwise, a nitrogen filled glovebox from Inert, Innovative Technology, Inc. Company (< 0.1 ppm O₂ and < 0.1 ppm H₂O) was used for all reactions. All dry solvents were obtained from a solvent purification system (SPS, from Inert, Innovative Technology, Inc. Comp), degassed by three freeze-pump-thaw cycles and stored under a nitrogen atmosphere unless noted otherwise. In general, solvents were distilled prior to use except for HPLC grade solvents. For Kugelrohr distillation a Kugelrohr oven from Büchi was used.

Analyses

All NMR spectroscopic measurements were carried out at 300 K. ¹H NMR spectra were recorded on a Bruker DRX 500 (500 MHz), a Bruker Avance 600 (600 MHz), a Bruker Avance Neo (600 MHz) with a TXI probe head or a Bruker Avance Neo (600 MHz) with BBO probe head. ¹³C{¹H} NMR spectra were recorded on a DRX 500 (125 MHz), a Bruker Avance 600 (150 MHz), a Bruker Avance Neo (150 MHz) with a TXI probe head or a Bruker Avance Neo (150 MHz) with BBO probe head. ¹H and ¹³C{¹H} NMR spectra were referenced against the residual solvent signals. ¹H NMR spectra in D₂SO₄ were referenced against 20 µL of a solution containing 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) in D₂O (1 mg/ µL).^{1 11}B{¹H} NMR spectra were recorded on a Bruker DRX 500 (180 MHz) spectrometer The reference of the ¹¹B{¹H} NMR spectra was BF₃·OEt₂ in CDCl₃. The ¹¹B{¹H} NMR spectra of the **BNCD**Is were performed using a quartz tube and a blank spectrum of CDCl₃ was subtracted to ensure that weak/broad signals could be detected without interference of the glass peak from residual boron in the probe head. ²⁹Si{¹H} NMR spectra were recorded on a Bruker Avance Neo (119 MHz) spectrometer with BBO probe head. The reference for ²⁹Si{¹H} NMR spectra was tetramethylsilane in CDCl₃. Where possible, NMR signals were assigned using ¹H COSY, ¹H/¹H NOESY, ¹H/¹³C{¹H} HSQC and ¹H/¹³C{¹H} HMBC experiments.

Solvent	Supplier	Purity	Comments
Benzene- <i>d</i> ₆	Deutero	99%	Dried over CaH ₂ , degassed and
			stored in a glovebox
Chloroform- <i>d</i> ₁	Deutero	99.9%	
Sulfuric acid- d_2 in D ₂ O	Deutero	96-98%	
D ₂ O	Deutero	99.9%	

Tab. S1: List of NMR solvents.

IR spectra were recorded on a Perkin Elmer Paragon 1000 FT-IR spectrometer with a A531-G Golden-Gate ATR-unit or a Nicolet Thermo iS10 scientific spectrometer with a diamond ATR unit.

Melting points were measured with a BÜCHI Melting Point M-560 instrument. If no melting point is given for a solid, no melting behavior was observed up to 300 °C.

Electron impact (EI) mass spectrometric experiments were measured using the direct inlet or indirect inlet methods on a MAT95 XL double-focusing mass spectrometer from Finnigan or a JEOL JMS-100 GCV (AccuTOFGCV) mass spectrometer. The ionization energy of the electron impact ionization was 70 eV. Atmospheric pressure chemical ionization (APCI) and electron spray ionization (ESI) experiments were performed on a Bruker Impact II from Bruker Daltonics.

UV/Vis spectra were recorded on a Perkin Elmer Lambda 14 or a Jasco V-770 spectrometer at 20 °C using a quartz cuvette with a length of 1 cm.

The UV-Vis emission and excitation spectra measurements were recorded on a FL 920 Edinburgh Instrument and corrected for the response of the photomultiplier. Quantum yields were calculated relative to fluorescein (ϕ = 0.90 in NaOH 0.1 N). Excitation was performed at 460 nm.

The NIR emission spectra were recorded on a C9920-03 Hamamatsu system equipped with a UV/Vis detector (350 - 950 nm) and a NIR detector (950 - 1700 nm) at the Capther facility (Scanmat, UMS 2001). Excitation was performed at 375 nm with a diode laser.

Chemicals and Solvents

Chemical	Supplier	Purity	Comments
Acetic acid	Grüssing Inc.	99.5%	
Ammoniumchloride	Carl Roth	> 99.7%	
Boron tribromide solution	Sigma Aldrich		1 м in DCM
Boron trichloride solution	Sigma Aldrich		1 м in DCM
Bromine	Acros Organics	99%+	
1-Bromobutane	Merck	>98%	
2-Bromothiophene	TCI	> 98%	
4-Bromotriphenylamine	ChemPur	97%	
1-Butanol	Grüssing Inc.	99%	
<i>n</i> -Butyllithium	Sigma Aldrich		2.5 M in <i>n</i> -hexane
Calcium hydride	Acros Organics	90-95%	
Cyclohexylamine	Merck	> 99%	
1,2-Dibromoethane	TCI	> 99%	
2,6-Di <i>iso</i> propylaniline	Merck	> 99%	
DBU	Sigma Aldrich	98%	
DSS	Deutero	99%	
<i>n</i> -Hexylamine	Merck	99.9%	Distilled from CaH ₂ , degassed by the freeze-pump-thaw technique and stored in the glovebox.
Hydrochloric acid	Grüssing	37%	
Imidazole	Merck	99%	
Magnesium	Riedel-de Haen	> 99%	
Magnesium sulfate	Grüssing Inc.	99%	
Molecular sieves	Merck		3 Å
Perylene-3,4,10-11- tetracarboxylic acid dianhydride (PTCDA)	Merck	98%	
Potassium carbonate	Grüssing Inc.	85%	
Potassium hydroxide	Grüssing Inc.	85%	
Sodium bisulfite	Sigma Aldrich		40% w/w
Sodium hydroxide	Grüssing Inc.	99%	
Sulfuric acid	Grüssing Inc.	95-97%	
tetrabutylammonium hexafluorophosphate	Sigma Aldrich	> 99%	
<i>p</i> -Toluenesulfonic acid monohydrate	Riedel-de Haen	> 99%	

Tab. S2: Overview of chemicals.

Trimethylsilylchloride	Sigma Aldrich	> 99%	
Tetra- <i>n</i> - butylammonium fluoride hydrate	Sigma Aldrich	98%	

Tab. S3: List of the utilized solvents.

Solvent	Supplier	Purity	Comments
Acetonitrile	Sigma Aldrich	≥ 99.5%	HPLC grade
Chloroform	Sigma Aldrich	≥ 99.0%	
Dichloromethane	Fisher	99.8%	
	Scientific		
Dichloromethane (dry)	Fisher	99.8%	Dried via solvent purification system,
	Scientific		degassed by freeze-pump-thaw
			technique and stored in the glovebox
Diethyl ether (for SPS)	Riedel-de	> 99.5%	Distilled, dried via solvent purification
	Haen		system, degassed by freeze-pump-thaw
			technique and stored in the glovebox.
Ethanol	Th. Geyer	99%	
Methanol	Fisher	99.9	HPLC grade
	Scientific		
<i>N</i> -Methyl-2-pyrrolidinone	Acros	99%	anhydrous
	Organics		
Petrol ether	Grüssing Inc	techn.	Bp. 60 -90 °C
Toluene	Sigma Aldrich	> 99.7%	
Toluene (dry)	Acros	≥ 99.85%	Extra dry, stored over 3 Å molecular
			sieve, degassed by the freeze-pump-thaw
			technique and stored in the glovebox.
Triethylamine	ChemPur	99%	Dry, degassed by the freeze-pump-thaw
			technique and stored in the glovebox.

Chromatography

Unless stated otherwise chromatographic purifications were performed with silica gel (Merck, grain size 15-40 μ m). Thin layer chromatography (TLC) was performed by using TLC Silicagel 60 F254 from MERCK on alumina plates. For the detection of the spots, a UV lamp ($\lambda = 254/366$ nm) was used.

Syntheses

Scheme 1: Conditions: i) 1-butanol, 1-bromobutane, DBU, MeCN, 85 °C, 24 h, 92% ii) Br₂, K₂CO₃, DCM, 25 °C, 24 h, 45% isomerically pure product iii) *p*-TsOH H₂O, toluene, 100 °C, 30 h, 76% vi) NMP, AcOH a) cyclohexylamine 85 °C 4 h, 52% b) 2,6-diisopropylaniline, 120 °C, 24 h, 63% v) *n*-hexylamine, 60 °C, 6 h, 50-51%, on a larger scale 10% of **1,7-DHA-PDI**^{Dip} and 9% of **1,7-DHA-PDI**^{Hex} vi) *n*BuLi, -78 °C, Et₂O, 1 h then TMSCl, -78 °C to 25 °C, 78% vii) BCl₃, DCM, -50 C, 72% viii) 1,2-dibromoethane, magnesium, THF, 80 °C, 30 min, TMSCl, 50 °C, 2 h and 25 °C, 2 d, 71% ix) BCl₃, DCM, 25 C, 14 h, used *in situ*.

Scheme 2: Condition: i) TEA, toluene, 110 °C, 4-24 h, 50-98%.

Perylene-3,4,9,10-tetra-n-butylester (PTBE)

This synthetic procedure published for a similar compound and was adapted with changes from the literature² and was not performed under inert conditions.

A mixture of perylene-3,4,9,10-tetracarboxylic dianhydride (**PTCDA**, 4.00 g, 10.2 mmol), DBU (6.40 mL, 40.8 mmol), *n*-butanol (25.6 mL, 81.6 mmol) in MeCN (150 mL) was stirred at 25 °C for 0.5 h. To this slightly orange mixture, 1-bromobutane (8.73 mL, 81.6 mmol) was added, followed by MeCN (30 mL). The mixture was stirred for 24 h at 85 °C. After cooling to 25 °C and additional stirring for 21 h, the beginning precipitation was completed by adding methanol (250 mL). The mixture was filtered to give the product as an orange solid without further purification (**PTBE**, 6.10 g, 9.40 mmol, 92%).

¹**H NMR** (500 MHz, CDCl₃) δ = 8.22 (d, ³*J* = 7.9 Hz, 4H, *H*-1,6,7,12), 8.00 (d, ³*J* = 7.9 Hz, 4H, *H*-2,5,8,11), 4.34 (t, ³*J* = 6.8 Hz, 8H, CH₂-C₃H₇), 1.84 -1.75 (m, 8H, CH₂-CH₂-C₂H₅), 1.53-1.44 (m, 8H, C₂H₄-CH₂-CH₃), 1.00 (t, ³*J* = 7.4 Hz, 12H, CH₃) ppm. ¹³C{¹H} **NMR** (125 MHz, CDCl₃): δ = 168.67 (COO-(C₄H₉)), 133.17 (C-3,4,9,10), 130.62 (C-6a,6b,12a,12b), 130.54 (C-2,5,8,11-), 129.13 (C-3a,9a), 128.95 (C-3a¹,6b¹), 121.51 (C-1,6,7,12), 65.49 (CH₂-C₃H₇), 30.80 (CH₂-CH₂-C₂H₅), 19.42 (C₂H₄-CH₂), 13.95 (CH₃) ppm. **HRMS** (EI): *m/z* calcd. for C₄₀H₄₄O₈ 652.30362 [M]⁺⁺; found 652.30296 [M]⁺⁺ (100%). **IR** (ATR): \tilde{v} = 2958 (m), 2930 (w), 2870 (w), 1721 (s), 1705 (m), 1588 (m), 1472 (m), 1270 (s), 1267 (m), 1167 (s), 1131 (s), 1096 (m), 1004 (m, 939 (m), 842 (m), 805 (m), 746 (s) cm⁻¹. **Mp**.: 165 °C.

The analytical data were in agreement with previously published values.³

1,7-Dibromoperylene-3,4,9,10-tetra-n-butylester (1,7-DB-PTBE)

This synthetic procedure was adapted from the literature⁴ and was not performed under inert conditions.

A mixture of perylene-3,4,9,10-tetra-*n*-butylester (**PTBE**, 5.00 g, 7.66 mmol) and K_2CO_3 (2.50 g, 18.1 mmol) in DCM (60 mL) was stirred at 25 °C. To this mixture, bromine (5.12 mL, 100 mmol) was added dropwise over a period of 2 h 5 min and the mixture was stirred for 24 h at 25 °C. Then a saturated aqueous solution of NaHSO₃ (35 mL, 40% *w/w*) was added dropwise over a period of 4 h. The organic layer was washed with water (100 mL), dried over MgSO₄, filtered, and after the removal of the solvent, the remaining orange material was dried (3.4 x 10⁻⁴ mbar, 60 °C, 24 h). An isomeric mixture of of 1,6- and 1,7-isomers in a ratio of 1:4 as determined by ¹H NMR spectroscopy was obtained (5.90 g, 7.28 mmol). The isomeric mixture (5.90 g) was dissolved in DCM (60 mL) and further MeCN (540 mL) was added to the solution. The flask was left open in the fume hood for 3 days and crystals were isolated (3.47 g). The second recrystallization using DCM (40 mL) and MeCN (370 mL) yielded the pure isomer (**1,7-DB-PTBE**, 2.81 g, 3.47 mmol, 45%, lit.^[4]: 62%).

¹**H NMR** (500 MHz, CDCl₃): δ = 8.91 (d, ³*J* = 7.9 Hz, 2H, *H*-6,12), 8.28 (s, 2H, *H*-2,8), 8.07 (d, ³*J* = 7.9 Hz, 2H, *H*-5,11), 4.35 (td, ³*J* = 6.8 Hz, ⁴*J* = 1.7 Hz, 8H, CH₂-C₃H₇), 1.84-1.73 (m, 8H, CH₂-CH₂-C₂H₅), 1.54-1.44 (m, 8H, C₂H₄-CH₂), 1.01 (t, ³*J* = 7.4 Hz, 12H, CH₃) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃): δ = 168.13 (COO-(C₄H₉)-4,10), 167.26 (COO-(C₄H₉)-3,9), 136.80 (CH-2,8), 131.93 (C-6b,12b), 131.87 (C-6a,12a), 131.27 (C-3,9), 130.61 (C-(3a,9a or 3a¹,6b¹)), 130.60 (C-(3a,9a or 3a¹,6b¹)), 129.17 (CH-5,11), 127.77 (CH-6,12), 126.64 (C-4,10), 118.85 (C-1,7), 65.96 (CH₂-C₃H₇), 65.74 (CH₂-C₃H₇), 30.76 (CH₂-CH₂-C₂H₅), 30.73 (CH₂-CH₂-C₂H₅), 19.40 (C₂H₄-CH₂), 19.37 (C₂H₄-CH₂-CH₃), 13.93 (CH₃) ppm. HRMS (EI): *m/z* calcd. for C₄₀H₄₂⁸¹Br₂O₈ 810.10490 [M]⁺⁺, found 810.10195 [M]⁺⁺ (100). IR (ATR): \tilde{v} = 2958 (m), 2932 (w), 2872 (w), 1717 (s), 1475 (m), 1397 (m), 1299 (s), 1267 (m), 1223 (m), 1194 (m), 1172 (s), 1058 (m), 1030 (m), 980 (m), 938 (m), 887 (m), 864 (m), 840 (m), 755 (m) cm⁻¹. Mp.: 125 °C.

The analytical data were in agreement with reported values.⁴

1,7-Dibromoperylene-3,4,9,10-tetracaboxylic dianhydride (1,7-DB-PTCDA)

This synthetic procedure was adapted from the literature⁴ and was not performed under inert conditions.

A mixture of 1,7-dibromoperylene-3,4,9,10-tetra-*n*-butylester (**1,7-DB-PTBE**, 2.50 g, 3.08 mmol) and *p*-TsOH·H₂O (2.50 g, 15.4 mmol) in toluene (90 mL) was stirred at 100 °C for 30 h. Subsequently, the reaction mixture was filtered and washed with methanol (250 mL) and water (150 mL). Then the

precipitate was stirred with chloroform (200 mL) at 71 °C for 2 h. After having cooled to 23 °C, the precipitate was filtered and washed again with chloroform (400 mL). Drying (60 °C, 10 h, 1.6×10^{-3} mbar) afforded the product as a red solid (**1,7-DB-PTCDA**, 1.29 g, 2.34 mmol, 76%, lit.⁴: 95%).

¹**H NMR** (500 MHz, D₂SO₄): δ = 9.02 (d, ³*J* = 7.9 Hz, 2H, *H*-6,12), 8.35 (s, 2H, *H*-2,8), 8.13 ppm (d, ³*J* = 7.9 Hz, 2H, *H*-5,11) ppm. ¹**H**-¹³C{¹**H**} **HSQC/HMBC NMR** (126 MHz, D₂SO₄): δ = 158.2 (COO-3,9), 157.3 (COO-4,10), 136.4 (*C*-2,8), 130.2 (*C*-6b,12b), 130.1 (*C*-6a,12a), 128.8 (*C*-5,11), 124.1 (*C*-6,12), 123.3 (*C*-(3a¹,6b¹)), 123.0 (*C*-(3a,9a)), , 119.0 (*C*-1,7), 110.7 (*C*-4,10), 110.4 (*C*-3,9) ppm.¹ **HRMS** (EI): *m/z* [M]⁺⁻ calcd. for C₂₄H₆O₆⁷⁹Br₂ 547.85256; found 547.85214 (100%). **IR** (ATR): \tilde{v} = 1773 (s), 1724 (s), 1593 (s), 1593 (s), 1376 (w), 1297 (m), 1285 (m), 1230 (m), 1213 (m), 1138 (m), 1057 (m), 1037 (m), 956 (w), 859 (w), 804 (w), 733(w), 693 (m) cm⁻¹.

The analytical data were in agreement with reported values.⁴

1,7-Dibromo-*N*,*N*'-di(cyclohexyl)perylene-3,4,9,10-tetracaboxylic acid diimide (1,7-DB-PDI^{Cy})

This synthetic procedure was adapted from the literature,⁵ where a similar molecule was described.

A mixture of 1,7-dibromoperylene-3,4,9,10-tetracaboxylic acid dianhydride (**1,7-DB-PTCDA**, 1.00 g, 1.82 mmol) and NMP (30 mL) was placed in an ultrasonic bath for 1 h. Then cyclohexylamine (0.630 mL, 5.45 mmol) and acetic acid (0.676 mL, 11.8 mmol) were added and the reaction mixture was heated to 85 °C under a nitrogen atmosphere for 7 h. After cooling to 25 °C, the reaction mixture was poured into methanol (150 mL) and cooled to -10 °C for 12 h. The solid was separated by filtration, washed with methanol (250 mL), dried (6.2×10^{-2} mbar, 22 °C, 2 h) and was purified by column chromatography (silica, eluent: chloroform:petrol ether (3:1), R_f(CHCl₃) = 0.75). The product was obtained as a dark red solid (**1,7-DB-PDI^{Cy}**, 670 mg, 52%).

¹**H NMR** (500 MHz, CDCl₃) δ = 9.48 (d, ³*J* = 8.2 Hz, 2H, *H*-6,12), 8.89 (s, 2H, *H*-2,8), 8.68 (d, ³*J* = 8.2 Hz, 2H, *H*-5,11), 5.03 (tt, ³*J* = 12.4, 3.6 Hz, 2H, *CH*), 2.55 (qd, ³*J* = 12.4, 9.0 Hz, 4H, CH-CH_{ax}), 1.92 (d, ³*J* = 12.4 Hz, 4H, CH-CH₂-CH_{ax}), 1.81-1.76 (m, 6H, CH-CH_{eq} and CH-(CH₂)₂-CH_{ax}), 1.51-1.31 (m, 6H, CH₂, CH-CH₂-CH_{eq} and CH-(CH₂)₂-CH_{eq}) ppm. ¹³C{¹H} **NMR** (125 MHz, CDCl₃): δ = 163.49 (COO-4,10), 162.94 (COO-3,9), 138.11 (CH-2,8), 132.99 (C-6b,12b), 132.83 (C-6a,12a), 130.13 (CH-5,11), 129.41 (C-3,9), 128.62 (CH-6,12), 127.19 (C-3a,9a), 123.87 (C-4,10), 123.46 (C-3a¹,6b¹), 120.86 (C-1,7), 54.41 (CH), 29.26 (CH-CH₂), 26.66 (CH-CH₂-CH₂), 25.55 (CH-(CH₂)₂-CH₂) ppm. **HRMS** (EI): *m/z* [M]⁺⁻ calcd. for C₃₆H₂₆⁷⁹Br⁸¹BrN₂O₄ 710.02389; found 710.02443. calcd. for C₃₆H₂₆⁸¹Br₂N₂O₄ 712.02184; found 712.02315; 547.84 (100%). **IR** (ATR): \tilde{v} = 2926 (w), 2852 (w), 1697 (m), 1655 (s), 1587 (m), 1575 (m), 1382 (m), 1326 (m), 1302 (w), 1257 (w), 1237 (s), 1187 (m), 1156 (m), 1143 (m), 979 (w), 859 (w), 824 (m), 808 (m), 745 (m), 690 (m), 683 (m), 657 (m) cm⁻¹.

The analytical data were in agreement with previously reported values.⁵

¹ Due to the low solubility only ¹H, ¹H -¹³C{¹H}-HSQC and ¹H, ¹³C{¹H}-HMBC NMR signals were used to identify and assign the signals.

1,7-Dibromo-*N*,*N*'-bis(di*iso*propylphenyl)-perylene-3,4,9,10-tetracaboxylic acid diimide

(1,7-DB-PDI^{Dip})

This synthetic procedure was adapted from the literature.⁵

This synthetic procedure was adapted from the literature.⁴: Under nitrogen atmosphere, a mixture of 1,7-dibromoperylene-3,4,9,10-tetracaboxylic acid dianhydride (**1,7-DB-PTCDA**, 3.79 g, 6.89 mmol) and NMP (40 mL) was placed in an ultrasonic bath for 1 h. Then 2,6-di*iso* propylaniline (7.36 g, 41.5 mmol) and acetic acid (2.25 mL, 39.5 mmol) were added, and the reaction was heated to 120 °C for 4 d. After cooling to 25 °C water (100 mL) was added. The precipitate was collected by vacuum filtration and washed with water (600 mL) and methanol (150 mL) and cooled to -10 °C for 12 h. The solid was collected by filtration and washed with cold methanol (50 mL). The resulting powder was dried (2.0 x 10⁻² mbar, 200 °C, 14 h) and was purified by column chromatography (silica, eluent: DCM, $R_f(DCM) = 0.75$). The product was obtained as a dark red solid (**1,7-DB-PDI**^{Dip}, 3.80 g, 4.37 mmol, 63%, lit.⁴: 66%).

¹**H NMR** (601 MHz, CDCl₃) δ = 9.57 (d, ³*J* = 8.2 Hz, 2H, *H*-6,12), 9.02 (s, 2H, *H*-2,8), 8.81 (d, ³*J* = 8.2 Hz, 2H, *H*-5,11), 7.52 (t, ³*J* = 7.8 Hz, 2H, Ph-*H*-4'), 7.37 (d, ³*J* = 7.8 Hz, 2H, Ph-*H*-3',5'), 2.74 (sept., ³*J* = 6.7 Hz, 4H, CH), 1.19 (dd, ³*J* = 6.7 Hz, ⁴*J* = 1.8 Hz, 24H, CH₃) ppm. ¹³C{¹H} **NMR** (151 MHz, CDCl₃): δ = 163.15 ((*C*(O)N)-4,10), 162.65 ((*C*(O)N)-3,9), 145.75 (Ph-*C*-2',6'), 138.63 (*C*-2,8), 133.59 (*C*-6b,12b), 133.43 (*C*-6a,12a), 130.80 (*C*-5,11), 130.27 (Ph-*C*-1'), 130.05 (Ph-*C*-4'), 129.79 (*C*-3,9), 128.87 (*C*-6,12), 127.85 (*C*-3a,9a), 124.36 (Ph-*C*-3',5'), 123.35 (*C*-4,10), 123.02 (*C*-3a¹,6b¹), 121.22 (*C*-1,7), 29.45 (*C*H(CH₃)), 24.19 and 24.16 (*C*H₃) ppm. **HRMS** (EI): *m/z* [M]⁺⁻ calcd. for C₄₈H₄₀N₂O₄⁷⁹Br₂ 866.13493; found 866.13370; 549.70 (100%). **IR** (ATR): υ = 2959 (m), 2925 (m), 1707 (s), 1668 (s), 1589 (s), 1383 (m), 1336 (s), 1248 (m), 1178 (m), 834 (m), 809 (m), 746 (m), 692 (w) cm⁻¹.

The analytical data were in agreement with previously reported values.⁴

1,7-Di(*n*-hexylamino)-*N*,*N*'-di(cyclohexyl)perylene-3,4,9,10-tetracaboxylic acid diimide (1,7-DHA-PDI^{Cy})

Under an argon atmosphere, 1,7-dibromo-*N*,*N*'-di(cyclohexyl)perylene-3,4,9,10-tetracarboxylic acid diimide (**1,7-DB-PDI**^{Cy}, 100 mg, 140 µmol) and *n*-hexylamine (10.0 mL, 76.0 mmol) were mixed. The mixture was stirred at 60 C for 3 d. Subsequently, the excess of *n*-hexylamine was removed with a rotary evaporator (80 °C, 10 mbar). The crude product was purified by column chromatography (silica, eluent: DCM, R_f (DCM) = 0.68) to yield the product as a green solid (**1,7-DHA-PDI**^{Cy}, 53 mg, 70.4 µmol, 50%).

¹**H NMR** (600 MHz, CDCl₃): δ = 8.60 (d, ³*J* = 8.1 Hz, 2H, *H*-6,12), 8.16 (d, ³*J* = 8.1 Hz, 2H, *H*-5,11), 7.96 (s, 2H, *H*-2,8), 5.59 (t, ³*J* = 4.6 Hz, 2H, N*H*), 5.01 (tt, ³*J* = 12.1, 3.6 Hz, 2H, C*H*), 3.19 (q, ³*J* = 6.8 Hz, 4H, NH-C*H*₂), 2.57 (qd, ³*J* = 12.1, 3.0 Hz, 4H, CH-C*H*_{ax}), 1.93 (d, ³*J* = 12.6 Hz, 4H, CH-CH₂-C*H*_{ax}), 1.83 - 1.71 (m, 6H, CH-C*H*_{eq} and CH-(CH₂)₂-C*H*_{ax}), 1.66 (quin., ³*J* = 7.1 Hz, 4H, NH-(CH₂)-C*H*₂), 1.51 - 1.21 (m, 18H, CH-CH₂-C*H*_{eq}, CH-(CH₂)₂-C*H*_{eq} and NH-(CH₂)₂-(C*H*₂)₃), 0.93 (t, ³*J* = 7.1 Hz, 6H, C*H*₃) ppm. ¹³C{¹H} **NMR** (150 MHz, CDCl₃): δ = 164.36 ((*C*(O)N)-3,9), 163.91 ((*C*(O)N)-4,10), 145.89 (C-1,7), 133.86 (C-6a,12a), 129.89 (C-4,10), 126.97 (C-5,11), 123.17 (C-3,9), 122.45 (C-3a,9a), 121.46 (C-6,12), 120.66 (C-3a¹,6b¹), 117.94 (C-2,8), 116.73 (C-6b,12b), 54.00 (CH), 44.75 (NH-CH₂), 31.64 (NH-CH₂-CH₂), 29.44 (CH-CH₂), 29.27 (NH-(CH₂)₂-CH₂), 27.09 (NH-(CH₂)₃-CH₂), 26.76 (CH-CH₂-CH₂), 25.68 (CH-(CH₂)₂-CH₂), 22.74 (NH-(CH₂)₄-CH₂), 14.15 (*C*H₃) ppm. **HRMS** (APCI): *m/z* [M+H]⁺ calcd. for C₄₈H₅₇N₄O₄ 753.43743; found 753.43686. **IR** (ATR): υ = 3314 (w), 2924 (m), 2851 (m), 1687 (s), 1641 (s), 1584 (s), 1568 (s), 1512 (w), 1452 (w), 1421 (m), 1330 (s), 1280 (m), 1257 (m), 1190 (m), 1124 (w), 1102 (w), 984 (m), 895 (w), 866 (w), 805 (m), 750 (m), 653 (m), 643 (m) cm⁻¹. 1,7-Di(*n*-hexylamino)-*N*,*N*'-bis(2,6-di(*iso*proypyl)phenyl)perylene-3,4,9,10-tetracaboxylic acid diimide (1,7-DHA-PDI^{Dip})

Under an argon atmosphere, 1,7-dibromo-*N*,*N'*-*bis*(di*iso*proypylphenyl)perylene-3,4,9,10tetracarboxylic acid diimide (**1,7-DB-PDI**^{Dip}, 100 mg, 117 µmol) and *n*-hexylamine (10.0 mL, 76.0 mmol) were mixed. The mixture was stirred at 60 °C for 3 d. Subsequently, the excess of *n*-hexylamine was removed at a rotary evaporator (80 °C, 10 mbar). The crude product was purified by column chromatography (silica, eluent: DCM, R_f (DCM) = 0.74) to yield the product as a green solid (**1,7-DHA-PDI**^{Dip}, 54 mg, 59.3 µmol, 51%).

The reaction was also performed on a 2.34 mmol scale where the product was isolated in lower yield (**1,7-DHA-PDI**^{Dip}, 204 mg, 0.22 mmol, 10%). As a side-product (R_f(DCM) = 0.55), the product of a transamination of **1,7-DHA-PDI**^{Dip} was isolated as a green solid (**1,7-DHA-PDI**^{Hex}, 187 mg, 0.20 mmol, 9%).

¹**H NMR** (600 MHz, CDCl₃): δ = 8.91 (d, ³*J* = 8.1 Hz, 2H, *H*-6,12), 8.46 (d, ³*J* = 8.1 Hz, 2H, *H*-5,11), 8.30 (s, 2H, *H*-2,8), 7.49 (t, ³*J* = 7.8 Hz, 2H, Ph-*H*-4'), 7.35 (d, ³*J* = 7.8 Hz, 4H, Ph-*H*-3',5'), 5.81 (t, ³*J* = 7.8 Hz, 2H, NH), 3.48 (q, ³*J* = 7.1 Hz, 4H, NH-*CH*₂), 3.33-3.27 (m, 4H, NH-*CH*₂), 2.77 (sept., ³*J* = 6.6 Hz, 4H, Ph-(*CH*)-(*CH*₃)₂), 1.79 (quin., ³*J* = 7.1 Hz, 4H, NH-(*CH*₂)-*CH*₂), 1.43 - 1.32 (m, 8H, NH-(*CH*₂)₂-(*CH*₂)₃), 1.22 - 1.16 (m, 24H, Ph-(CH)-(*CH*₃)₂), 0.91 (t, ³*J* = 7.0 Hz, 6H, *CH*₃) ppm. ¹³C{¹H} **NMR** (150 MHz, CDCl₃): δ = 163.84 ((*C*(O)N)-3,9), 163.75 ((*C*(O)N)-4,10), 146.19 (*C*-1,7), 145.67 (Ph-*C*-2',6'), 134.40 (*C*-6a,12a), 130.94 (Ph-*C*-1'), 130.54 (*C*-4,10), 129.51 (Ph-*C*-4'), 127.54 (*C*-5,11), 124.03 (Ph-*C*-3',5'), 123.24 (*C*-3,9), 123.00 (*C*-3a¹,6b¹), 121.78 (*C*-6,12), 120.42 (*C*-3a,9a), 118.85 (*C*-2,8), 117.21 (*C*-6b,12b), 44.90 (NH-*CH*₂), 31.46 (NH-*CH*₂-*CH*₂), 29.71 (NH-(*CH*₂)₂-*CH*₂), 29.51 (Ph-(*C*H)-(*CH*₃)₂), 26.90 (NH-(*CH*₂)₃-*CH*₂), 24.05 and 24.03 (Ph-(*C*H)-(*CH*₃)₂), 22.56 (NH-(*C*H₂)₄-*C*H₂), 14.00 (*C*H₃) ppm. **HRMS** (ESI): *m*/*z* [M+H]⁺ calcd. for C₆₀H₆₉N₄O₄ 909.53152; found 909.53133. **IR** (ATR): υ = 3338 (w), 2956 (m), 2925 (m), 2855 (m), 1690 (s), 1653 (m), 1583 (m), 1568 (m), 1507 (m), 1456 (m), 1421 (m), 1338 (s), 1276 (s), 1197 (m), 1125 (m), 866 (m), 840 (m), 805 (m), 764 (m), 750 (s), 737 (m), 691 (m) cm⁻¹.

1,7-Di(*n*-hexylamino)-*N*,*N*'-di(*n*-hexyl)perylene-3,4,9,10-tetracaboxylic acid diimide (1,7-DHA-PDI^{Hex})

This product was isolated as side-product (see above).

¹**H NMR** (500 MHz, CDCl₃): δ = 8.48 (d, ³*J* = 8.1 Hz, 2H, *H*-6,12), 8.09 (d, ³*J* = 8.1 Hz, 2H, *H*-5,11), 7.80 (s, 2H, *H*-2,8), 5.49 (t, ³*J* = 4.8 Hz, 2H, *NH*-CH₂), 4.08 (t, ³*J* = 7.8 Hz, 4H, (CO)₂N-CH₂), 3.08 (dd, ³*J* = 12.1, 6.9 Hz, 4H, NH-CH₂), 1.71 (quin, ³*J* = 7.5 Hz, 4H, (CO)₂N-CH₂-CH₂), 1.58 (quin, ³*J* = 7.3 Hz, 4H, NH-CH₂-CH₂), 1.47 - 1.28 (m, 24H, NH-(CH₂)₂-(CH₂)₃ and (CO)₂N-(CH₂)₂-(CH₂)₃) and (CO)₂N-(CH₂)₂-(CH₂)₃), 0.96 - 0.86 (m, 12H, CH₃) ppm. ¹³C{¹H} **NMR** (126 MHz, CDCl₃): δ = 163.67 ((C(0)N)-3,9), 163.19 ((C(0)N)-4,10), 145.77 (C-1,7), 133.80 (C-6a, 12a), 129.68 (C-4,10), 126.60 (C-5,11), 122.39 (C-3,9), 122.08 (C-3a,9a), 121.31 (C-6,12), 120.03 (C-3a¹,6b¹), 117.71 (C-2,8), 116.56 (C-6b,12b), 44.67 (NH-CH₂), 40.69 ((CO)₂N-CH₂), 31.71 ((NH-(CH₂)₄-CH₂) or ((CO)₂N-(CH₂)₄-CH₂)), 31.66 ((NH-(CH₂)₄-CH₂) or ((CO)₂N-(CH₂)₄-CH₂), 27.51 (NH-(CH₂)₄-CH₂), 28.13 ((CO)₂N-CH₂-CH₂), 27.11 (NH-(CH₂)₂-CH₂), 27.01 ((CO)₂N-(CH₂)₂-CH₂), 22.75 (NH-(CH₂)₄-CH₂) and ((CO)₂N-(CH₂)₄-CH₂), (NH-(CH₂)₄-CH₂) 14.14 (CH₃) ppm. **HRMS** (ESI): *m/z* calcd. for C₄₈H₆₀N₄O₄ 756.46091 [M+H]⁺, found 756.46031 [M+H]⁺. **IR** (ATR): υ = 3318 (w), 2954 (m), 2920 (m), 2852 (m), 1734 (m), 1717 (s), 1685 (m), 1653 (m), 1590 (m), 1569 (m), 1560 (m), 1507 (m), 1489 (m), 1472 (m), 1420 (m), 1338 (s), 1276 (s), 1260 (m), 1181 (m), 1122 (m), 1091 (m), 1022 (m) 866 (m), 804 (m), 720 (m),682 (m) cm⁻¹.

2-(Trimethylsilyl)thiophene (TphTMS)

In a Schlenk tube, 2-bromothiophene (10.0 g,61.3 mmol) was dissolved in diethyl ether (100 mL) and cooled to -78 °C. To this solution, *n*-butyllithium (27.0 mL, 67.5 mmol, 2.5 M in *n*-hexane) was added over a period of 5 min and the reaction mixture was stirred for 1 h. Subsequently, trimethylsilyl chloride (8.10 mL, 67.4 mmol) was added in one portion and the reaction mixture was stirred for 18 h. The reaction mixture was added to a sat. aq. ammonium chloride solution (150 mL). The organic phase was separated, washed with water (2 x 150 mL), dried over magnesium sulfate, filtered, and after careful removal of the solvent using a rotary evaporator (b.p. (**TphTMS**) = 70 °C (20 mbar)), the product was obtained as a colorless oil (7.52 g, 48.1 mmol, 78%).

¹**H** NMR (600 MHz, CDCl₃) δ = 7.61 (dd, ³*J* = 4.6 Hz, ⁴*J* = 0.9 Hz, 1H, *H*-5), 7.28 (dd, ³*J* = 3.3 Hz, ⁴*J* = 0.9 Hz, 1H, *H*-3), 6.60 (dd, ³*J* = 4.6 Hz, ³*J* = 3.3 Hz, 1H, *H*-4), 0.34 (s, 9H, CH₃) ppm. ¹³C{¹H} NMR (151 MHz, CDCl₃) δ = 140.21 (*C*-2), 134.08 (*C*-3), 130.51 (*C*-5), 128.22 (*C*-4), 0.16 (*C*H₃) ppm. ²⁹Si{¹H} NMR (119 MHz, CDCl₃) δ = -6.54 (s) ppm. **HRMS** (EI): *m/z* [M]⁺⁻ calcd. for C₇H₁₂SSi 156.04235; found 156.04191; 141.10 (100%). **IR** (ATR): υ = 2956 (w), 1406 (m), 1325 (w), 1248 (s), 1213 (m), 1082 (m), 991 (m), 857 (m), 825 (s), 754 (s), 701 (s) cm⁻¹.

The analytical data were in accordance to previously reported values.⁶

Dichloro-2-thienyl borane (TphBCl₂)

Under a argon atmosphere, 2-(trimethylsilyl)thiophene (**TphTMS**, 5.96 g, 38.1 mmol) was added to a solution of boron trichloride (60.0 mL, 60.0 mmol, 1 M in DCM) within 10 min at -50 °C. The reaction mixture was slowly warmed to 22 °C over the course of 14 h. After the solvent was removed *in vacuo*, the crude product was purified by inert Kugelrohr distillation (70 °C, 17 mbar) to give the product as a colorless oil (**TphBCl**₂, 4.66 g, 27.6 mmol, 72%). This very corrosive product was stored in the glovebox freezer (-25 °C).

¹**H NMR** (500 MHz, C_6D_6) δ = 7.64 (dd, ³*J* = 3.7 Hz, ⁴*J* = 1.0 Hz, 1H, *H*-5), 7.10 (dd, ³*J* = 4.6 Hz, ⁴*J* = 1.0 Hz, 1H, *H*-3), 6.60 (dd, ³*J* = 4.6 Hz, ³*J* = 3.7 Hz, 1H, *H*-4) ppm. ¹³C{¹H} **NMR** (126 MHz, C_6D_6) δ = 143.46 (*C*-3), 140.48 (*C*-5), 139.0 (*C*-2, only HMBC), 129.75 (*C*-4) ppm. ¹¹B{¹H} **NMR** (160 MHz, C_6D_6) δ = 48.88 (s) ppm. Due to the corrosive nature of this molecule mass spectrometry data were not obtained.

The analytical data are in accordance with literature.⁷

4-(Trimethylsilyl)triphenylamine (TPATMS)

This synthetic procedure was adapted from the literature⁸: In a Schlenk flask, THF (2 mL) and 1,2dibromoethane (200 μ L, 2.32 mmol) were added to magnesium turnings (4.49 g, 184.8 mmol) at 25 °C, and the resulting mixture was stirred for 5 min. To this mixture, a part (4 mL) of a 4bromotriphenylamine (**TPABr**, 10.0 g, 30.8 mmol) solution in THF (20 mL) was added and the mixture was heated to 55 °C. After 5 min stirring at this temperature the rest of the solution (16 mL) was added dropwise over the course of 20 min. After the addition was complete, the reaction mixture was stirred at 80 °C for a further 30 min. The still warm solution (≈40 °C) was transferred into another flask via a stainless steel cannula and chlorotrimethylsilane (3.36 g, 30.8 mmol) was added dropwise to this solution over the course of 10 min. After the addition was complete, the mixture was heated to 50 °C for 2 h, and then stirred at 25 C for 2 d. To this mixture, water (100 mL) was added, and the mixture was extracted with *n*-hexane (3 x 100 mL). All organic extracts were combined, dried over magnesium sulfate, filtrated and concentrated *in vacuo* to give an yellow oil (6.95 g, 21.9 mmol, 71%, lit.⁸: 84%).

¹**H NMR** (600 MHz, CDCl₃): δ = 7.39 (d, ³*J* = 7.9 Hz, 2H, *H*-3,5), 7.08 -7.03 (m, 4H, *H*-3',5'), 7.13 (d, ³*J* = 7.5 Hz, 4H, *H*-2',6'), 7.08 -7.03 (m, 4H, *H*-4' and *H*-2,6), 0.27 (s, 9H, CH₃) ppm. ¹³C{¹H} **NMR** (151 MHz, CDCl₃): δ = 148.46 (*C*-1), 147.77 (*C*-1'), 134.37 (*C*-3,5), 133.43 (*C*-4), 129.36 (*C*-3',5'), 124.73 (*C*-2',6'), 123.07 (*C*-4'), 122.86 (*C*-2,6), 14.14 (CH₃) ppm. ²⁹Si{¹H} **NMR** (119 MHz, CDCl₃): δ = -4.67 (s) ppm. **HRMS** (EI): *m/z* calcd. for C₂₁H₂₃NSi 317.15943 [M]⁺. found 317.15971; 302.30 (100%). **IR** (ATR): υ = 3019 (w), 2951 (m), 1583 (s), 1485 (s), 1325 (m), 1314 (m), 1271 (s), 1247 (m), 1109 (m), 1075 (w), 1027 (w), 833 (s), 815 (m), 749 (m), 717 (m), 692 (s) cm⁻¹.

The analytical data were in agreement with reported values.⁸

1,7-Di(n-hexyl)-6,12-di(phenyl)-1,12,6,7-di([1,2]azaborinine)-N,N'-di(cyclohexyl)perylene-

3,4,9,10-tetracarboxylic acid diimide (Ph-BNCDI^{Cy})

In a nitrogen filled glovebox, a Schlenk tube was charged with 1,7-di(*n*-hexylamino)-*N*,*N*'-di(cyclohexyl)perylene-3,4,9,10-tetracaboxylic acid diimide (**1,7-DHA-PDI**^{Cy}, 20.0 mg, 26.7 µmol), toluene (5.0 mL), triethylamine (0.5 mL) and dichlorophenyl borane (16.0 mg, 106 µmol). The reaction mixture was stirred for 14 h at 110 °C. After allowing the reaction to cool, all volatiles were removed and the residue was dissolved in DCM (30 mL), washed with brine (3 x 50 mL), NaOH (1 M, 3 x 50 mL) and water (3 x 50 mL). After drying over magnesium sulfate, filtration and removal of the solvent under reduced pressure, the crude product was subjected to column chromatography (silica, eluent: DCM, $R_f = 0.80$) to give the product (**Ph-BNCDI**^{Cy}, 18 mg, 19.4 µmol, 98%) as a red-violet solid.

¹**H** NMR (500 MHz, CDCl₃): δ = 9.53 (s, 2H, *H*-2,8), 9.34 (s, 2H, *H*-5,11), 7.73 (dd, ³*J* = 7.7 Hz, ⁴*J* = 1.4 Hz, 4H, Ph-*H*-2',6'), 7.69 - 7.55 (m, 6H, Ph-*H*-3',4',5'), 5.22 (tt, ³*J* = 12.1 Hz, ⁴*J* = 3.7 Hz, 2H, CH), 4.70 (t, ³*J* = 12.1 Hz, 4H, N-CH₂), 2.69 (qd, ³*J* = 12.5 Hz, ⁴*J* = 3.3 Hz, 4H, CH-CH_{ax}), 2.09 - 1.93 (m, 8H, N-(CH₂)-CH₂ and CH-(CH₂)CH_{ax}), 1.90 (d, ³*J* = 10.9 Hz, 4H, CH-CH_{eq}), 1.75 (d, ³*J* = 14.2 Hz, 2H, CH-(CH₂)₂-CH_{ax}), 1.59 - 1.45 (m, 4H, N-(CH₂)-CH₂), 1.46 - 1.33 (m, 6H, N-(CH₂)-CH₂ and CH-(CH₂)₂-CH_{eq}), 1.32 - 1.18 (m, 8H, (CH₂)₂-CH₃ and CH-(CH₂)CH_{eq}), 0.86 (t, ³*J* = 7.0 Hz, 6H, CH₃) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃): δ = 165.12/165.09 ((C(O)N)-3,9/4,10), 138.88 (Ph-C-1', only HMBC), 138.69 (C-1,7), 137.34 (C-5,11), 134.01 (C-6a,12a), 132.68 (Ph-C-2',6'), 132.21 (C-6,12), 128.50 (Ph-C-4'), 128.37 (Ph-C-2',5'), 123.54/123.39 (C-3,9 or C-4,10), 123.26 (C-3a,9a), 120.77 (C-3a₁,6b₁), 120.71 (C-2,8), 120.39 (C-6b,12b), 54.48 (CH), 50.37 (N-CH₂), 21.63 (N-(CH₂)₄-CH₂), 14.08 (CH₃) ppm. ¹¹B{¹H} NMR (160 MHz, CDCl₃): δ = 39.63 (br) ppm. HRMS (EI): *m/z* [M]⁺⁻ Calcd. C₈₄H₈₀¹¹B₂N₄O₄ 924.49517; found 924.49473 (100%); [M]⁺⁻ Calcd. C₈₄H₈₀¹⁰B₂N₄O₄ 922.50243; found 922.48756. IR (ATR): υ = 2922 (m), 2851 (m), 1697 (s), 1654 (s), 1596 (s), 1565 (m), 1449 (m), 1437 (s), 1413 (m), 1338 (m), 1299 (s), 1244 (s), 1197 (m), 1102 (m), 1058 (m), 958 (m), 895 (m), 812 (m), 758 (m), 738 (m), 703 (s), 656 (s) cm⁻¹.

1,7-Di(n-hexyl)-6,12-di(phenyl)-1,12,6,7-di([1,2]azaborinine)-N,N'-bis(2,6-

di(*iso*proypyl)phenyl)perylene-3,4,9,10-tetracarboxylic acid diimide (Ph-BNCDI^{Dip})

In a nitrogen filled glovebox, a Schlenk tube was charged with 1,7-di(*n*-hexylamino)-*N*,*N*'-*bis*(2,6-di(*iso*propyl)phenyl)perylene-3,4,9,10-tetracaboxylic acid diimide (**1,7-DHA-PDI**^{Dip}, 18.0 mg, 19.8 µmol), toluene (5.0 mL), triethylamine (0.5 mL) and dichlorophenyl borane (**PhBCl**₂, 16 mg, 106 µmol). The reaction mixture was stirred for 14 h at 110 °C. After allowing the reaction mixture to cool, all volatiles were removed *in vacuo*. The residue was dissolved in DCM (30 mL), washed with brine (3 x 50 mL), NaOH (1 M, 3 x 50 mL) and water (3 x 50 mL). After drying over magnesium sulfate, filtration and removal of the solvent, the crude product was subjected to column chromatography (silica, eluent: DCM, R_f = 0.81) to give the product (**Ph-BNCDI**^{Dip}, 18 mg, 16.7 µmol, 84%) as a red-violet solid.

¹**H** NMR (500 MHz, CDCl₃): δ = 9.73 (s, 2H, *H*-2,8), 9.52 (s, 2H, *H*-5,11), 7.84 - 7.77 (dd, ³*J* = 7.3 Hz, ⁴*J* = 1.2 Hz 4H, Ph-*H*-2',6'), 7.64 (t, ³*J* = 7.3 Hz, 4H, Ph-*H*-3',5'), 7.60 - 7.54 (m, 2H, Ph-*H*-4'), 7.51 (t, ³*J* = 7.3 Hz, 2H, N-(Ph-*H*-4'')), 7.38 (d, ³*J* = 7.9 Hz, 4H, N-(Ph-*H*-3,5'')), 4.79 (t, ³*J* = 7.7 Hz, 4H, N-CH₂), 2.89 (sept. ³*J* = 6.8 Hz, 4H, Ph-(CH)-(CH₃)₂), 2.13 - 2.04 (m, 4H, N-CH₂-CH₂), 1.47 - 1.38 (m, 4H, N-(CH₂)₂-CH₂), 1.30 - 1.15 (m, 32 H, N-(CH₂)₂-(CH₂)₂ and Ph-(CH)-(CH₃)₂), 0.82 (t, ³*J* = 7.0 Hz, 6H, CH₃) ppm. ¹³C**{**¹H} NMR (126 MHz, CDCl₃): δ = 164.78 ((C(O)N)-4,10), 164.50 ((C(O)N)-3,9), 145.87 (N-(Ph-*C*-2'',6'')), 139.11 (*C*-1,7),138.94 (Ph-*C*-1', only HMBC) 138.04 (*C*-5,11), 134.77 (*C*-6a,12a), 132.69 (Ph-*C*-2',6'), 131.15 (N-(Ph-*C*-1'')), 129.68 (N-(Ph-*C*-4'')), 128.63 (Ph-*C*-3',5'), 128.43 (Ph-*C*-4'), 124.45 (*C*-3a,9a), 124.18 (*C*-3,9 or *C*-4,10), 124.07 (N-(Ph-*C*-3'',5'')), 123.19 (*C*-3,9 or *C*-4,10), 121.53 (*C*-2,8), 121.12 (*C*-6b,12b), 120.55 (*C*-3a₁,6b₁), 50.60 (N-*C*H₂), 31.35 (N-CH₂-*C*H₂), 31.30 (N-(CH₂)₄-*C*H₂), 29.41 (Ph-(*C*H)-(CH₃)₂), 26.74 (NH-(CH₂)₂-CH₂), 24.27 and 24.22 (Ph-(CH)-(CH₃)₂), 22.50 (NH-(CH₂)₄-CH₂), 14.02 (CH₃) ppm. ¹¹B**{**¹H} NMR (160 MHz, CDCl₃): δ = 41.01 (br) ppm. HRMS (APCI, positive mode): *m/z* [M+H]⁺ Calcd. for C₇₂H₇₅¹¹B₂N₄O₄ 1081.59903; found 1081.59890. IR (ATR): υ = 2958 (w), 2924 (w), 2866 (w), 1708 (m), 1670 (s), 1599 (m), 1563 (m), 1446 (m), 1436 (m), 1312 (s), 1280 (m), 1247 (s), 1208 (m), 1109 (m), 1063 (m), 846 (m), 814 (m), 791 (m), 774 (m), 760 (m), 736 (s), 703 (m), 681 (m) cm⁻¹.

1,7-Di(n-hexyl)-6,12-di(phenyl)-1,12,6,7-di([1,2]azaborinine)-N,N'-di(n-

hexyl)perylene3,4,9,10-tetracarboxylic acid diimide (Ph-BNCDI^{Hex})

In a nitrogen filled glovebox, a Schlenk tube was charged with 1,7-di(*n*-hexylamino)-*N*,*N*'-di(*n*-hexyl)perylene-3,4,9,10-tetracaboxylic acid diimide (**1,7-DHA-PDI**^{Hex}, 50.0 mg, 66.0 µmol), toluene (10.0 mL), triethylamine (0.5 mL) and dichlorophenyl borane (40.2 mg, 264 µmol). The reaction mixture was stirred for 12 h at 110 °C. After allowing the reaction mixture to cool, the solvent was evaporated and the residue was dissolved in DCM (30 mL), washed with brine (1 x 50 mL), .1 M NaOH (1 x 50 mL) and water (1 x 50 mL). After drying over magnesium sulfate, filtration, and removal of the solvent, the crude product was purified by column (silica, eluent: DCM, $R_f = 0.83$) to give the product as a red-violet solid (**Ph-BNCDI**^{Hex}, 29.0 mg, 31.1 µmol, 47%).

¹**H NMR** (500 MHz, CDCl₃): δ = 9.55 (s, 2H, H-2,8), 9.38 (s, 2H, H-5,11), 7.76 (dd, ³J = 7.7 Hz, ⁴J = 1.4 Hz, 4H, Ph-H-2',6'), 7.62 (m, 6H, Ph-H-3',4',5'), 4.71 (t, ${}^{3}J$ = 7.8 Hz, 4H, BN-CH₂), 4.31 (t, ${}^{3}J$ = 7.6 Hz, 4H, (CO)₂N-CH₂), 2.04 (quin., ³J = 7.5 Hz, 4H, BN-CH₂-CH₂), 1.85 (quin., ³J = 7.5 Hz, 4H, (CO)₂N-CH₂-CH₂), 1.50 (quin., ³*J* = 7.5 Hz, BN-(CH₂)₂-CH₂), 1.38 (m, 14H, BN-(CH₂)₄-CH₂, (CO)₂N-(CH₂)₂-CH₂ and BN-CH₂-CH₂), 1.23 (m, 20H, (CO)₂N-(CH₂)₄-CH₂ and (CO)₂N-(CH₂)₄-CH₂ and residual grease), 0.91 (t, ³J = 7.1 Hz, 6H, CH₃),0.86 (t, ${}^{3}J$ = 6.9 Hz, 6H, CH₃) ppm. ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃): δ = 164.55 ((C(O)N)-4,10), 164.53 ((C(O)N)-3,9), 139.20 (Ph-C-1', only HMBC), 138.72 (C-1,7), 137.48 (C-5,11), 134.22 (C-6a,12a), 132.66 (Ph-C-2',6'), 132.41 (br, C-6,12), 128.56 (Ph-C-4'), 128.39 (Ph-C-3',5'), 123.52 (C-3,9), 123.43 (C-4,10), 122.92 (C-3a,9a), 120.78 (C-3a¹,6b¹), 120.57 (C-6b,12b), 120.18 (C-2,8), 50.43 (N-CH₂), 41.13 ((CO)₂N-CH₂), 31.75 ((BN-(CH₂)₄-CH₂), 31.34 (CO)₂N-(CH₂)₄-CH₂), 31.28 (BN-CH₂-CH₂), 29.85 ((CO)₂N-CH₂-CH₂), 28.38 (BN-(CH₂)₃-CH₂) and(CO)₂N-(CH₂)₃-CH₂), 27.09 (BN-(CH₂)₂-CH₂), 26.82 ((CO)₂N-(CH₂)₂-CH₂), 22.76 (BN-(CH₂)₄-CH₂), 22.63 ((CO)₂N N-(CH₂)₄-CH₂), 14.24 (BN-(CH₂)₅-CH₃), 14.08 ((CO)₂N-(CH₂)₅-*CH*₃) ppm. ¹¹B{¹H} NMR (160 MHz, CDCl₃): δ = 40.42 ppm. HRMS (APCI): m/z [M+H]⁺ calcd. for C₆₀H₆₇¹¹B₂N₄O₄ 929.53602; found 929.53628. **IR** (ATR): υ = 2955 (w), 2923 (w), 2865 (w), 1706 (m), 1667 (m), 1600 (m), 1562 (m), 1448 (m), 1436 (m), 1327 (m), 1281 (m), 1247 (s), 1208 (m), 1105 (m), 1029 (m), 1062 (m), 958 (m), 844 (m), 775 (s), 760 (m), 736 (m), 700 (m) cm⁻¹.

1,7-Di(*n*-hexyl)-6,12-di(thiophen-2-yl)-1,12,6,7-di([1,2]azaborinine)-*N*,*N*'-

di(cyclohexyl)perylene-3,4,9,10-tetracarboxylic acid diimide (Tph-BNCDI^{Cy})

In a nitrogen filled glovebox, a vial was charged with 1,7-di(*n*-hexylamino)-*N*,*N*'-di(cyclohexyl)perylene-3,4,9,10-tetracaboxylic acid diimide (**1,7-DHA-PDI**^{Cy}, 19.0 mg, 25.2 µmol), toluene (5.0 mL), triethylamine (0.5 mL) and dichloro-2-thienyl borane (**TphBCl**₂, 175 mg, 403 µmol). The sealed vial was heated 24 h at 110 °C. After cooling to 25 °C, all volatiles were removed *in vacuo* and the red product was dried (9.7 x 10⁻² mbar, 70 °C, 2 h). The residue was dissolved in DCM (30 mL), washed with brine (3 x 50 mL), 1 M NaOH (3 x 50 mL) and water (3 x 50 mL). After drying over magnesium sulfate, filtration, removal of the solvent, the product was subjected to column chromatography (silica, eluent: gradient petrol ether to DCM, R_f(DCM) = 0.65) to give the product (**BNCDI**^{Cy}, 23 mg, 24.5 µmol, 97%) as a red-violet solid.

¹**H NMR** (500 MHz, CDCl₃): δ = 9.56 (s, 2H, *H*-2,8), 9.54 (s, 2H, *H*-5,11), 7.87 (dd, ³*J* = 4.8 Hz, ⁴*J* = 0.8 Hz, 22H, Tph-*H*-3'), 7.61 (dd, ³*J* = 3.2 Hz, ⁴*J* = 0.8 Hz, 2H, Tph-*H*-5'), 6.60 (dd, ³*J* = 4.8 Hz, ³*J* = 3.2 Hz, 2H, Tph-*H*-4'), 5.23 (tt, ³*J* = 12.0, 3.8 Hz, 2H, C*H*), 4.79 (t, ³*J* = 7.8 Hz, 4H, N-C*H*₂), 2.70 (qd, ³*J* = 12.0, 3.0 Hz, 4H, CH-C*H*_{ax}), 2.12 (quin., ³*J* = 7.8 Hz, 4H, N-(CH₂)-C*H*₂), 1.98 (d, ³*J* = 13.5 Hz, 4H, CH-CH₂-C*H*_{ax}), 1.91 (d, ³*J* = 12.0 Hz, 4H, CH-C*H*_{eq}), 1.79 (d, ³*J* = 13.0 Hz, 2H, CH-(CH₂)₂-C*H*_{ax}), 1.59 - 1.26 (m, 18H, CH-CH₂-C*H*_{eq}, CH-(CH₂)₂-C*H*_{eq} and N-(CH₂)₂-(C*H*₂)₃), 0.90 (t, ³*J* = 7.0 Hz, 6H, C*H*₃) ppm. ¹³C{¹H} **NMR** (126 MHz, CDCl₃): δ = 165.06 ((*C*(O)N)-4,10), 165.04 ((*C*(O)N)-3.9), 138.79 (C-1.7), 137.33 (C-5.11), 136.68 (Tph-*C*-2', only HMBC), 134.22 (Tph-*C*-5'), 133.85 (*C*-6a,12a), 132.51 (*C*-6,12, only HMBC), 130.03 (Tph-*C*-3'), 128.55 (Tph-*C*-4'), 123.70 (*C*-3.9 or *C*-4,10), 123.54 (*C*-3.9 or *C*-4,10), 123.15 (*C*-3a¹.6b¹), 122.67 (*C*-3a,9a), 12089 (*C*-2.8), 120.46 (*C*-6b,12b), 54.56 (CH), 50.70 (N-CH₂), 25.70 (CH-(CH₂)₂-CH₂), 22.74 (N-(CH₂)₄-CH₂), 14.13 (CH₃) ppm. ¹¹B{¹H} NMR (160 MHz, CDCl₃): δ = 38.70 (br) ppm. HRMS (EI): *m/z* [M] ⁺ calcd. for C₅₆H₅₈N₄O₄¹¹B₂S₂ 936.41460; found 936.41893 (100%). IR (ATR): υ = 2921 (m), 2852 (m), 1698 (s), 1654 (s), 1599 (s), 1566 (m), 1450 (s), 1416 (m), 1404 (m), 1343 (w), 1302(s), 1280 (m), 1245 (s), 1202 (m), 1087 (w), 1020 (w), 897 (w), 847 (w), 812 (m), 706 (m), 651 (m), 599 (w) cm⁻¹.

1,7-Di(n-hexyl)-6,12-di(thiophen-2-yl)-1,12,6,7-di([1,2]azaborinine)-N,N'-bis(2,6-

di(isoproypyl)phenyl)perylene-3,4,9,10-tetracarboxylic acid diimide (Tph-BNCDI^{Dip})

In a nitrogen filled glovebox, a pressure tube (50 mL) was charged with 1,7-di(*n*-hexylamino)-*N*,*N*'*bis*(di*iso*propylphenyl)perylene-3,4,9,10-tetracaboxylic acid diimide (**1,7-DHA-PDI**^{Dip}, 120 mg, 132 µmol), toluene (4.8 mL), triethylamine (200 µL) and dichloro-2-thienyl borane (100 mg, 607 µmol). The sealed tube was heated for 10 h at 110 °C. After cooling to 25 °C, the reaction mixture was dissolved in DCM (30 mL), washed with brine (3 x 50 mL), 1 M NaOH (3 x 50 mL) and water (3 x 50 mL). After drying over magnesium sulfate, filtration, and removal of the solvent *in vacuo*, the crude product was purified by column chromatography (silica, eluent: DCM, R_f(DCM) = 0.81) to give the red/violet product (**BNCDI**^{Dip}, 120 mg, 110 µmol, 83%).

¹**H NMR** (500 MHz, CDCl₃): δ = 9.75 (s, 2H, *H*-5,11), 9.74 (s, 2H, *H*-2,8), 7.86 (dd, ³*J* = 4.8 Hz, ⁴*J* = 0.8 Hz, 2H, Tph-*H*-3'), 7.67 (dd, ${}^{3}J$ = 3.3 Hz, ${}^{4}J$ = 0.8 Hz, 2H, Tph-*H*-5'), 7.53 (t, ${}^{3}J$ = 7.9 Hz, 2H, Ph-*H*-4''), 7.50 (dd, ³J = 4.8 Hz, ³J = 3.3 Hz, 2H, Tph-*H*-4'), 7.40 (d, ³J = 7.9 Hz, 4H, Ph-*H*-3",5"), 4.79 (m_c, 4H, N-CH₂), 2.91 (m_c, 4H, Ph-(CH)-(CH₃)₂), 2.20 (m_c, 4H, NH-CH₂), 1.54 (m_c, 4H, N-(CH₂)-CH₂), 1.51 - 1.21 (m, 8H, NH-(CH₂)₂-(CH₂)₃), 1.22 (t, ³J = 6.8 Hz, 24H, Ph-(CH)-(CH₃)₂), 0.87 (t, ³J = 7.0 Hz, 6H, CH₃) ppm. ¹³C{¹H} NMR $(126 \text{ MHz}, \text{CDCl}_3)$: $\delta = 164.69 ((C(O)N)-4,10), 164.49 ((C(O)N)-3,9), 145.84 (Ph-C-2'',6''), 139.16 (C-1,7), 139.16 ($ 138.02 (C-2,8), 136.60 (Tph-C-2'), 134.59 (C-6a,12a), 134.42 (Tph-C-5'), 132.71 (C-6,12, only HMBC), 131.06 (Ph-C-1"), 130.13 (Tph-C-3'), 129.71 (Ph-C-4"), 128.62 (Tph-C-4'), 124.20 (Ph-C-3",5"), 123.92 (C-3a₁,6b₁), 123.24 (C-3,4/9,10), 121.63 (C-3a,9a), 121.14 (C-5,11), 120.61 (C-6b,12b), 50.92 (NH-CH₂), 31.90 (NH-CH₂-CH₂), 31.42 (NH-(CH₂)₂-CH₂), 29.42 (Ph-(CH)-(CH₃)₂), 26.75 (NH-(CH₂)₃-CH₂), 24.25 and 24.23 (Ph-(CH)-(CH₃)₂), 22.58 (NH-(CH₂)₄-CH₂), 14.08 (CH₃) ppm. ¹¹B{¹H} NMR (160 MHz, CDCl₃): δ = 38.21 (br) ppm. **HRMS** (APCI, MeOH/toluene, positive mode): m/z [M+H]⁺ calcd. For C₆₈H₇₁¹¹B₂N₄O₄S₂ 1093.51179; found 1093.51256. HRMS (APCI, MeOH/toluene, negative mode): *m/z* [M]⁻⁻ Calcd. for C₆₈H₇₀¹¹B₂N₄O₄S₂ 1092.50507; found 1092.50602. **IR** (ATR): υ = 2956 (w), 2921 (w), 2851 (w), 1707 (m), 1669 (m), 1600 (m), 1562 (m), 1436 (m), 1311 (s), 1280 (m), 1245 (s) 1207 (m), 1192 (m), 1053 (m), 847 (m), 813 (m), 792 (m), 759 (m), 753 (m), 720 (m), 700 (s) cm⁻¹.

1,7-Di(*n*-hexyl)-6,12-*bis*(4-(diphenylamino)phenyl)-1,12,6,7-*di*([1,2]azaborinine)-*N*,*N*'di(cyclo-hexyl)perylene-3,4,9,10-tetracarboxylic acid diimide (TPA-BNCDI^{Cy})

The precursor 4-(dichloroboranyl)-*N*,*N*-diphenylaniline was generated *in situ* from (4-(trimethylsilyl)phenyl)-diphenylamine (1.00 g, 3.15 mmol) using boron trichloride (3.50 mL, 3.50 mmol, 1 M in DCM) in DCM (10 mL). After stirring at 25 °C for 14 h, all volatiles were removed, and the resulting yellow oil was directly used.⁸ In a nitrogen filled glovebox, a Schlenk tube was charged with 1,7-di(*n*-hexylamino)-*N*,*N'*-di(cyclohexyl)perylene-3,4,9,10-tetracaboxylic acid diimide (**1,7-DHA-PDI**^{Cy}, 111 mg, 150 µmol), toluene (10.0 mL), triethylamine (1.0 mL) and 4-(dichloroboranyl)-*N*,*N*-diphenylaniline (**TPABCI**₂, 1.02 g, 3.15 mmol). The sealed tube was stirred for 4 h at 110 °C. Afterwards all volatiles were removed *in vacuo* and the residue was dissolved in DCM (50 mL), washed with brine (3 x 50 mL), 1 M NaOH (3 x 50 mL) and water (3 x 50 mL). After drying over magnesium sulfate, filtration and removal of all volatiles *in vacuo*, the material was mixed with *n*-pentane (200 mL, 2x) and heated to 50 °C and the solution was discarded. The residual blue/violet solid was subjected to column chromatography. (silica, eluent: gradient *n*-pentane to DCM, R_f(DCM) = 0.75) to give the product (**TPA-BNCDI**^{Cy}, 134 mg, 0.11 mmol, 71%) as a red-violet solid.

¹**H NMR** (500 MHz, CDCl₃): δ = 9.59 (s, 2H, *H*-2,8), 9.54 (s, 2H, *H*-5,11), 7.62 (d, ³*J* = 8.4 Hz, 4H, B-Ph-*H*-2',6'), 7.39 - 7.30 (m, 20H, B-Ph-*H*-3',5' and TPA-Ph-*H*-2'',3'',5'',6''), 7.10 (t, ³*J* = 8.4 Hz, 4H, TPA-Ph-*H*-4''), 5.24 (tt, ³*J* = 12.1 Hz, ⁴*J* = 3.6 Hz, 2H, CH), 4.77 (t, ³*J* = 8.0 Hz, 4H, N-CH₂), 2.71 (qd, ³*J* = 12.6 Hz, ⁴*J* = 3.3 Hz, 4H, CH-CH_{ax}), 2.07 (m_c, 4H, N-(CH₂)-CH₂), 1.98 (d, ³*J* = 10.9 Hz, 4H, CH-(CH₂)CH_{ax}), 1.90 (d, ³*J* = 10.2 Hz, 4H, CH-CH_{eq}), 1.79 (d, ³*J* = 12.8 Hz, 2H, CH-(CH₂)₂-CH_{ax}), 1.62 - 1.40 (m, 20H, N-(CH₂)-CH₂, N-(CH₂)-CH₂ and CH-(CH₂)₂-CH_{eq}), 1.37-1.15 (m, 30H, (CH₂)₂-CH₃ and CH-(CH₂)CH_{eq}), 0.90 (t, ³*J* = 7.0 Hz, 6H, CH₃) ppm. ¹³C{¹H} **NMR** (126 MHz, CDCl₃): δ = 164.83 ((C(O)N)-4,10), 164.66 ((C(O)N)-3,9), 148.08 (B-Ph-C-4'), 147.87 (TPA-Ph-C-1''), 138.97 (C-1,7), 137.49 (C-5,11), 134.26 (C-6a,12a), 134.01 (B-Ph-C-2',6'), 132.61 (C-6,12 only HMBC), 131.94 (B-Ph-C-1' only HMBC), 129.55 (TPA-Ph-C-3'',5''), 125.18 (TPA-Ph-C-2'',6''), 123.65/123.48 (C-3,9/4,10), 123.38 (C-3a,9a) 123.36 (TPA-Ph-C-4''), 122.63 (B-Ph-C-3',5'), 120.86 (C-6b,12b), 120.70 (C-3a¹,6b¹), 120.54 (C-2,8), 54.47 (CH), 50.37 (N-CH₂), 31.35 (N-(CH₂)-

*C*H₂ and N-(CH₂)₃-*C*H₂), 29.55 (CH-*C*H₂), 26.83 (CH-(CH₂)*C*H₂), 25.68 (CH-(CH₂)₂-*C*H₂), 22.73 (N-(CH₂)₄-*C*H₂), 14.14 (*C*H₃). ¹¹**B**{¹**H**} **NMR** (160 MHz, CDCl₃): δ = 40.57 (br) ppm. **HRMS** (ESI): *m/z* [M-B₂]²⁺ calcd. C₈₄H₈₀N₆O₄ 618.3115; found 618.31106. **IR** (ATR): υ = 2924 (w), 2856 (w), 1693 (m), 1654 (m), 1593 (s), 1566 (m), 1508 (m), 1486 (m), 1449 (m), 1436 (m), 1412 (m), 1362 (m), 1324 (m), 1299 (m), 1268 (s), 1256 (m), 1245 (m), 1194 (m), 1181 (m), 1102 (m), 813 (s), 755(s), 696 (s) cm⁻¹.

1,7-Di(n-hexyl)-6,12-bis(4-(diphenylamino)phenyl)-1,12,6,7-di([1,2]azaborinine)-N,N'-

bis(2,6-di(*iso*proypyl)phenyl)perylene-3,4,9,10-tetracarboxylic acid diimide (TPA-BNCDI^{Dip})

The precursor 4-(dichloroboranyl)-*N*,*N*-diphenylaniline was generated *in situ* from (4-(trimethylsilyl)phenyl)-diphenylamine (317 mg, 1.00 mmol) using boron trichloride (1.11 mL, 1.11 mmol, 1 M in DCM) in DCM (10 mL). After stirring at 25 °C for 14 h, all volatiles were removed, and the resulting yellow oil was directly used.⁸ In a nitrogen filled glovebox, a sealable vial was charged with 1,7-di(*n*-hexylamino)-*N*,*N'*-*bis*(2,6-di(*iso*propyl)phenyl)perylene-3,4,9,10-tetracaboxylic acid diimide (1,7-DHA-PDI^{Dip}, 98 mg, 0.10 mmol), toluene (5.0 mL), triethylamine (0.5 mL) and 4-(dichloroboranyl)-*N*,*N*-diphenylaniline (TPA-BCl₂, 326 mg, 1.00 mmol). The reaction mixture was stirred for 12 h at 110 °C. After the reaction mixture was cooled to 25 °C, it was mixed with DCM (30 mL), washed with brine (3 x 50 mL), 1 M NaOH (3 x 50 mL) and water (3 x 50 mL). After drying of the organic phase over magnesium sulfate, filtration and evaporation of all volatiles, the residue was mixed with *n*-pentane (200 mL, 2x) and heated to 50 °C where the solution was discarded. The product was subjected to column chromatography (silica, eluent: gradient *n*-pentane to DCM, R_f = 0.72) to give the product (71 mg, 0.05 mmol, 50%) as a red-violet solid.

¹**H NMR** (500 MHz, CDCl₃): δ = 9.72 (s, 2H, *H*-2,8), 9.66 (s, 2H, *H*-5,11), 7.66 (d, ³*J* = 8.2 Hz, 4H, B-Ph-*H*-2',6'), 7.53 (t, ³*J* = 7.9 Hz, 2H, (CO)₂N-Ph-*H*-4'''), 7.39 (d, ³*J* = 8.3 Hz, 4H, (CO)₂N-Ph-*H*-3''',5'''), 7.37 - 7.24 (m, 12H, B-Ph-*H*-3',5' and TPA-Ph-*H*-3'',5''), 7.29 - 7.27 (m, 8H, and TPA-Ph-*H*-2'',6''), 7.08 (tt, ³*J* = 7.2 Hz, ⁴*J* = 1.0 Hz, 4H, TPA-Ph-*H*-4'''), 4.84 (t, ³*J* = 8.0 Hz, 4H, N-CH₂), 2.92 (sept., ³*J* = 6.8 Hz, 4H, Ph-(CH)-(CH₃)₂), 2.23-2.17 (m, 4H, N-CH₂-CH₂), 1.52 - 1.44 (m, 4H, NH-(CH₂)₂-CH₂), 1.33- 1.27 (m, 8H, N-(CH₂)₃-(CH₂)₂), 1.26 - 1.18 (t, ³*J* = 6.8 Hz, 24H, Ph-(CH)-(CH₃)₂), 0.87 (t, ³*J* = 6.8 Hz, 6H, CH₃) ppm. ¹³C{¹H}

NMR (126 MHz, CDCl₃): δ = 164.83 ((*C*(O)N)-3,9), 164.66 ((*C*(O)N)-4,10), 148.24 (B-Ph-*C*-4'), 147.82 (TPA-Ph-*C*-1''), 145.88 ((CO)₂N-Ph-*C*-2''',6'''), 139.23 (*C*-1,7), 138.13 (*C*-5,11), 134.80 (*C*-6a,12a), 133.90 (B-Ph-*C*-2',6'), 132.77 (*C*-6,12, only HMBC), 131.78 (B-Ph-*C*-1', only HMBC), 131.19 ((CO)₂N-Ph-*C*-1'''), 129.75 ((CO)₂N-Ph-*C*-4'''), 129.55 (TPA-Ph-*C*-3'',5''), 125.21 (TPA-Ph-*C*-2'',6''), 124.39 (*C*-3a,9a), 124.26/124.10 ((CO)₂N-Ph-*C*-3''',5''), 123.40 (TPA-Ph-*C*-4''), 123.10/123.00 (*C*-3,9/4,10), 122.54 (B-Ph-*C*-3',5'), 121.51 (*C*-2,8), 121.10 (*C*-6b,12b), 120.45 (*C*-3a¹,6b¹), 50.50 (N-*CH*₂), 31.36 (N-*CH*₂-*CH*₂), 31.29 (N-(CH₂)₂-*CH*₂), 29.42 (Ph-(CH)-(CH₃)₂), 26.81 (N-(CH₂)₃-*CH*₂), 24.30 and 24.24 (Ph-(CH)-(*C*H₃)₂), 22.60 (N-(CH₂)₄-*C*H₂), 14.07 (*C*H₃) ppm. ¹¹B{¹H} NMR (160 MHz, CDCl₃): δ = 39.10 (br) ppm. HRMS (ESI, IMPACT II): *m/z* [M+Na]⁺ calcd. C₉₆H₉₂¹¹B₂N₆O₄Na 1437.72849; found 1437.72860. IR (ATR): υ = 2960 (w), 2927 (w), 2868 (w), 1706 (m), 1601 (m), 1589 (m), 1566 (m), 1508 (m), 1488 (m), 1448 (m), 1438 (m), 1314 (m), 1249 (s), 1211 (m), 1195 (m), 1107 (w), 1056 (w), 988 (w), 847 (m), 815 (m), 793 (m), 739 (m), 697 (s) cm⁻¹.

NMR Spectra

1,7-Dibromoperylene-3,4,9,10-tetra-*n*-butylester (1,7-DB-PTBE)

1,7-Dibromoperylene-3,4,9,10-tetracaboxylic dianhydride (1,7-DB-PTCDA)

Fig. S5: ¹H NMR (500 MHz, D_2SO_4 +DSS) spectrum of **1,7-DB-PTCDA**.

Fig. S7: ¹H-¹³C{¹H} HMBC spectrum of **1,7-DB-PTCDA**.

Fig. S6: ¹H-¹³C{¹H} HSQC spectrum of **1,7-DB-PTCDA**.

f1 (ppm)

1,7-Dibromo-N,N'-dicyclohexylperylene-3,4,9,10-tetracaboxylic acid diimide (1,7-DB-PDI^{Cy})

1,7-Dibromo-*N*,*N*'-(Di*iso*propylphenyl)-perylene-3,4,9,10-tetracaboxylic acid diimide (1,7-DB-PDI^{Dip})

1,7-Di(*n*-hexylamino)-*N*,*N*'-di(cyclohexyl)perylene-3,4,9,10-tetracaboxylic acid diimide (1,7-DHA-PDI^{Cy})

Fig. S13: ¹³C{¹H} NMR (150 MHz, CDCl₃) spectrum of **1,7-DHA-PDI**^{Cy}.
1,7-Di(*n*-hexylamino)-*N*,*N*'-bis(2,6-di*iso*propylphenyl)perylene-3,4,9,10-tetracaboxylic acid diimide (1,7-DHA-PDI^{Dip})

Fig. S15: ${}^{13}C{}^{1}H$ NMR (150 MHz, CDCl₃) spectrum of 1,7-DHA-PDI^{Dip}.

1,7-Di(*n*-hexylamino)-*N*,*N*'-di(*n*hexyl)perylene-3,4,9,10-tetracaboxylic acid diimide (1,7-DHA-PDI^{Hex})

Fig. S17: ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound 1,7-DHA.PDI^{Hex}.

2-(Trimethylsilyl)thiophene (TphTMS)

Fig. S19: ¹³C{¹H} NMR (151 MHz, CDCl₃) spectrum of TphTMS.

Fig. S20: $^{29}\text{Si}\{^{1}\text{H}\}$ NMR (119 MHz, CDCl_3) spectrum of TphTMS.

Fig. S23: ${}^{11}B{}^{1}H{}$ NMR (160 MHz, C₆D₆) spectrum of TphBCl₂.

4-(Trimethylsilyl)triphenylamine (TPATMS)

Fig. S24: 1 H NMR (600 MHz, CDCl₃) spectrum of compound TPATMS.

Fig. S26: $^{29}\text{Si}\{^{1}\text{H}\}$ NMR (119 MHz, CDCl_3) spectrum of compound TPATMS.

- 1,7-Di(n-hexyl)-6,12-di(phenyl)-1,12,6,7-di([1,2]azaborinine)-N,N'-di(cyclohexyl)perylene-
- 3,4,9,10-tetracarboxylic acid diimide (Ph-BNCDI^{Cy})

Fig. S27: ¹H NMR (500 MHz, CDCl₃) spectrum of compound Ph-BNCDI^{Cy}.

Fig. S28: ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound Ph-BNCDI^{Cy}.

Fig. S29: ¹¹B{¹H} NMR (160 MHz, CDCl₃) spectrum of compound Ph-BNCDI^{Cy}.

Fig. S30: ${}^{11}B{}^{1}H{}$ NMR (160 MHz, CDCl₃) differential spectrum of CDCl₃ and compound Ph-BNCDI^{Cy}.

1,7-Di(*n*-hexyl)-6,12-di(phenyl)-1,12,6,7-di([1,2]azaborinine)-*N*,*N*'-bis(2,6di*iso*propylphenyl)perylene-3,4,9,10-tetracarboxylic acid diimide (Ph-BNCDI^{Dip})

Fig. S32: ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃) spectrum of compound Ph-BNCDI^{Dip}.

Fig. S33: ${}^{11}B{}^{1H}$ NMR (160 MHz, CDCl₃) spectrum of compound Ph-BNCDI^{Dip}.

Fig. S34: ¹¹B{¹H} NMR (160 MHz, CDCl₃) differential spectrum of CDCl₃ and compound Ph-BNCDI^{Dip}.

1,7-Di(*n*-hexyl)-6,12-di(phenyl)-1,12,6,7-di([1,2]azaborinine)-*N*,*N*'-di(*n*-

hexyl)perylene3,4,9,10-tetracarboxylic acid diimide (Ph-BNCDI^{Hex})

Fig. S35: ¹H NMR (500 MHz, CDCl₃) spectrum of compound Ph-BNCDI^{Hex}.

Fig. S36: ¹³C{¹H} NMR (125 MHz, CDCl₃) spectrum of compound Ph-BNCDI^{Hex}.

Fig. S37: $^{11}B\{^{1}H\}$ NMR (160 MHz, CDCl₃) spectrum of compound Ph-BNCDI^{Hex}.

Fig. S38: ¹¹B{¹H} NMR (160 MHz, CDCl₃) differential spectrum of CDCl₃ and compound Ph-BNCDI^{Hex}.

1,7-Di(*n*-hexyl)-6,12-di(thiophen-2-yl)-1,12,6,7-di([1,2]azaborinine)-*N*,*N*'-

di(cyclohexyl)perylene-3,4,9,10-tetracarboxylic acid diimide (Tph-BNCDI^{Cy})

Fig. S39: ¹H NMR (500 MHz, CDCl₃) spectrum of Tph-BNCDI^{Cy}.

Fig. S40: ¹³C{¹H} NMR (126 MHz, CDCl₃) spectrum of Tph-BNCDI^{Cy}.

Fig. S41: $^{11}B\{^{1}H\}$ NMR (160 MHz, CDCl₃) spectrum of Tph-BNCDICy.

Fig. S42: ¹¹B{¹H} NMR (160 MHz, CDCl₃) differential spectrum of CDCl₃ and Tph-BNCDI^{Cy}.

1,7-Di(*n*-hexyl)-6,12-di(thiophen-2-yl)-1,12,6,7-di([1,2]azaborinine)-*N*,*N*'-bis(2,6di*iso*propylphenyl)perylene-3,4,9,10-tetracarboxylic acid diimide (Tph-BNCDI^{Dip})

Fig. S43: ¹H NMR (500 MHz, CDCl₃) spectrum of Tph-BNCDI^{Dip}.

-50.90-45.9031.8921.4022.4024.2524.2524.2524.2524.2524.2524.2524.2524.2524.2524.2524.2524.2524.2524.2524.2522.58

164.69 164.49 135.02 135.02 136.60 134.59 134.59 134.59 134.52 134.54 134.52 134.54 134.54 134.54 134.54 124.54 124.54 124.54 124.20 123.24 124.20 123.24 12

Fig. S44: $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl_3) spectrum of Tph-BNCDI^Dip.

Fig. S45: ${}^{11}B{}^{1}H{}$ NMR (160 MHz, CDCl₃) spectrum of Tph-BNCDI^{Dip}.

Fig. S46: ${}^{11}B{}^{1H}$ NMR (160 MHz, CDCl₃) differential spectrum of CDCl₃ and Tph-BNCDI^{Dip}.

1,7-Di(*n*-hexyl)-6,12-*bis*(4-(diphenylamino)phenyl)-1,12,6,7-*di*([1,2]azaborinine)-*N*,*N*'dicyclo-hexylperylene-3,4,9,10-tetracarboxylic acid diimide (TPA-BNCDI^{Cy})

ſ _____ 1 II 4.75 ⁻⁻ 24.05-5.19 --10.61[/] 4.25 8.70 13.04 5.13 4.26 4.62 2.00 1.93 4.66 3.96 2.03 2.13 5.0 ppm 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.0 3.5 3.0 2.5 2.0 1.0 0.5 0.0 -0.5 -1.0 4.5 1.5

Fig. S48: ¹³C{¹H}v NMR (125 MHz, CDCl₃) spectrum of compound TPA-BNCDI^{Cy}.

Fig. S49: $^{11}B\{^{1}H\}$ NMR (160 MHz, CDCl₃) spectrum of compound TPA-BNCDI^{Cy}.

Fig. S50: ¹¹B{¹H} NMR (160 MHz, CDCl₃) differential spectrum of CDCl₃ and compound TPA-BNCDI^{Cy}.

1,7-Di(*n*-hexyl)-6,12-*bis*(4-(diphenylamino)phenyl)-1,12,6,7-di([1,2]azaborinine)-*N*,*N*'bis(2,6-di*iso*propylphenyl)perylene-3,4,9,10-tetracarboxylic acid diimide (TPA-BNCDI^{Dip})

Fig. S51: ¹H NMR (500 MHz, CDCl₃) spectrum of compound TPA-BNCDI^{Dip}.

Fig. S52: $^{13}C\{^{1}H\}$ NMR (125 MHz, CDCl₃) spectrum of compound TPA-BNCDI^Dip.

Fig. S53: $^{11}B\{^{1}H\}$ NMR (160 MHz, CDCl3) spectrum of compound TPA-BNCDI^{Dip}.

Fig. S54: ¹¹B{¹H} NMR (160 MHz, CDCl₃) differential spectrum of CDCl₃ and compound TPA-BNCDI^{Dip}.

UV/Vis Absorption, Fluorescence and Excitation

Overview

compound	λ _{abs} a / nm	Lg(ε)ª	E_{opt} /eV ^b	λ_{lum}^{a}/nm	$\Delta v_{ m stokes}$ a /cm ⁻¹	$\Phi_{lum}{}^c$
Ph-BNCDI ^{Cy}	536	4.80	2.30	544	285	0.95
Ph-BNCDI ^{Dip}	539	4.91	2.23	543	137	0.88
Ph-BNCDI ^{nHex}	536	4.75	2.25	546	342	0.91
TPA-BNCDI ^{Cy}	540	4.68	2.19	581	1307	< 0.01
TPA-BNCDI ^{Dip}	541	4.66	2.16	574	1158	< 0.01
Tph-BNCDI ^{Cy}	535	4.74	2.24	544	310	0.95
Tph-BNCDI ^{Dip}	538	4.85	2.23	546	272	0.94

Tab. S4: Overview of the optical and thermal properties of all BNCDIs.

^a Measured in DCM solutions (10⁻⁵-10⁻⁶ M) ^b Calculated from the offset wavelength derived from the lowest energy absorption band. ^c Referenced externally against fluorescein in 0.1 M NaOH.

Ph-BNCDI^{Cy}

Fig. S55: Absorption/Emission/Excitation spectra of compound Ph-BNCDI^{Cy} in dichloromethane.

Ph-BNCDI^{Dip}

Fig. S56: Absorption/Emission/Excitation spectra of compound Ph-BNCDI^{Dip} in dichloromethane.

Ph-BNCD^{Hex}

Fig. S57: Absorption/Emission/Excitation spectra of compound Ph-BNCDI^{Hex} in dichloromethane.

Tph-BNCDI^{Cy}

Fig. S58: Absorption/Emission/Excitation spectra of Tph-BNCDI^{cy} in dichloromethane (10⁻⁶ M).

Tph-BNCDI^{Dip}

Fig. S59: Absorption/Emission/Excitation spectra of Tph-BNCDI^{Dip} in dichloromethane (10⁻⁶ M).

TPA-BNCDI^{Cy}

Fig. S60: Absorption/Emission/Excitation spectra of compound TPA-BNCDI^{cy} in cyclohexane.

Fig. S61: Absorption/Emission spectra of compound **TPA-BNCDI**^{Cy} in cyclohexane and DCM normalized (top) and not normalized (bottom).

TPA-BNCDI^{Dip}

Fig. S62: Absorption/Emission/Excitation spectra of compound TPA-BNCDI^{Dip} in cyclohexane.

Fig. S63: Absorption/Emission spectra of compound TPA-BNCDI^{Dip} in cyclohexane and DCM normalized (top) and not normalized (bottom).

Solvent-dependency for TPA-BNCDIs

Tab. S5: Solvent-dependent luminescence of **TPA-BNCDI**s. The photograph shows **TPA-BNCDI**^{Cy} in DCM (left)/cyclohexane (right) and **TPA-BNCDI**^{Dip} in DCM (left)/cyclohexane(right) under irradiation with UV-lamp at 365 nm.

compound	solvent	λ_{abs}/nm	λ _{ems} / nm	Δv_{Stokes} /cm ⁻¹	$\Phi_{lum}{}^{[a]}$
TPA-BNCDI ^{cy}	DCM	540	581	1307	<0.01
	cyclohexane	534	545	378	0.81
TPA-BNCDI ^{Dip}	DCM	541	574	1158	<0.01
	cyclohexane	535	560	835	0.39

Referenced externally against fluorescein in 0.1 M NaOH.

Electrochemistry

The electrochemical studies were carried out under argon using an Eco Chemie Autolab PGSTAT 30 potentiostat for cyclic voltammetry. A three-electrode configuration was used: the working electrode was a platinum disk, the reference electrode was a saturated calomel electrode and the counter-electrode a platinum wire. All potentials were internally referenced to the ferrocene/ferrocenium couple. For the measurements, concentrations of 10^{-3} M of the electroactive species were used in a 0.2 M solution of tetrabutylammonium hexafluorophosphate in degassed DCM. The scanning rate was 200 mV/s. Non-reversible waves were corrected against Fc/Fc⁺ potential, whereas reversible reduction waves were corrected against E_{1/2}p from ferrocene. Absolute HOMO/LUMO levels were calculated according to E_{LUMO}= -4.8 eV- E_{red} and E_{HOMO}= -4.8 eV - E_{ox}.⁹

Overview

Compound	E _{ox} / V	E _{red1} / V	E _{red2} / V	Eox,onset / V	Ered,onset / V	ΔE / V	Е _{LUMO} ^b / eV	Еномо ^b / eV
Ph-BNCDI ^{Cy}	+0.93	-1.30	-1.50	0.77	-1.09	1.86	-3.71	-5.57
Ph-BNCDI ^{Dip}	+1.00	-1.20	-1.49	0.83	-1.05	1.88	-3.75	-5.63
Ph-BNCDI ^{Hex}	+0.95	-1.26	-1.48	0.72	-1.07	1.79	-3.73	-5.52
Tph-BNCDI ^{Cy}	+0.93	-1.26	-1.48	0.74	-1.10	1.84	-3.66	-5.16
Tph-BNCDI ^{Dip}	+0.99	-1.22	-1.49	0.82	-1.05	1.87	-3.71	-5.21
TPA-BNCDI ^{Cy}	+0.54	-1.32	-1.63	0.36	-1.15	1.51	-3.69	-5.54
TPA-BNCDI ^{Dip}	+0.54	-1.19	-1.50	0.41	-1.09	1.50	-3.75	-5.62

Tab. S6: Overview of the redox properties of all BNCDIs.

^a In DCM with Bu_4NPF_6 (0.2 M), a scan rate of 200 mV/s and ferrocene/ferrocenium as reference. ^b Derived from E_{LUMO} = - 4.8 eV- E_{red} and E_{HOMO} = -4.8 eV- E_{ox} .⁹

Ph-BNCDI^{Cy} Oxidation

Fig. S64: Oxidation of compound Ph-BNCDI^{Cy} corrected against ferrocene/ferrocenium.

Ph-BNCDI^{Cy} Reduction

Fig. S65: Oxidation of compound Ph-BNCDI^{Cy} corrected against ferrocene/ferrocenium.

Ph-BNCDI^{Cy} Reduction

Fig. S66: Oxidation of compound Ph-BNCDI^{Cy} corrected against ferrocene/ferrocenium.

Ph-BNCDI^{Dip} Oxidation

Fig. S67: Oxidation of compound Ph-BNCDI^{Dip} corrected against ferrocene/ferrocenium.
Ph-BNCDI^{Dip} Reduction

Fig. S68: Reduction of Ph-BNCDI^{Dip} corrected against ferrocene/ferrocenium.

Ph-BNCDI^{Dip} Reduction 2

Fig. S69: Reduction of Ph-BNCDI^{Dip} corrected against ferrocene/ferrocenium.

Ph-BNCDI^{Hex} Oxidation

Fig. S70: Oxidation of compound Ph-BNCDI^{Hex} corrected against ferrocene/ferrocenium.

Ph-BNCDI^{Hex} Reduction

Fig. S71: Oxidation of compound Ph-BNCDI^{Hex} corrected against ferrocene/ferrocenium.

Tph-BNCDI^{Cy} Oxidation

Fig. S72: Oxidation of Tph-BNCDI^{Cy} corrected against ferrocene/ferrocenium.

Tph-BNCDI^{Cy} Reduction

Fig. S73: Reduction of Tph-BNCDI^{Cy} corrected against ferrocene/ferrocenium.

Tph-BNCDI^{Dip} Oxidation

Fig. S74: Oxidation of Tph-BNCDI^{Dip} corrected against ferrocene/ferrocenium.

Tph-BNCDI^{Dip} Reduction

Fig. S75: Reduction of Tph-BNCDI^{Dip} corrected against ferrocene/ferrocenium.

Tph-BNCDI^{Dip} Reduction 2

Fig. S76: Reduction of Tph-BNCDI^{Dip} corrected against ferrocene/ferrocenium.

TPA-BNCDI^{Cy} Oxidation

Fig. S77: Oxidation of compound TPA-BNCDI^{Cy} corrected against ferrocene/ferrocenium.

TPA-BNCDI^{Cy} Reduction

Fig. S78: Oxidation of compound TPA-BNCDI^{Cy} corrected against ferrocene/ferrocenium.

TPA-BNCDI^{Cy} Complete Redox

Fig. S79: Oxidation of compound TPA-BNCDI^{Cy} corrected against ferrocene/ferrocenium.

TPA-BNCDI^{Dip} Oxidation

Fig. S80: Oxidation of compound TPA-BNCDI^{Dip} corrected against ferrocene/ferrocenium.

TPA-BNCDI^{Dip} Reduction

Fig. S81: Oxidation of compound TPA-BNCDI^{Dip} corrected against ferrocene/ferrocenium.

TPA-BNCDI^{Dip} Reduction 2

Fig. S82: Oxidation of compound TPA-BNCDI^{Dip} corrected against ferrocene/ferrocenium.

TPA-BNCDI^{Dip} Redox

Fig. S83: Oxidation of compound TPA-BNCDI^{Dip} corrected against ferrocene/ferrocenium.

Thermogravimetric Analysis (TGA)

For thermal analysis, a Mettler Toledo DSC/TGA 3+ with 40 μ L aluminum crucibles was used. Measurements were performed with a gas flow of 20 mL/min nitrogen and a heating rate of 10 °C/min.

Fig. S84: Thermogravimetric analysis of all **BNCDI**s with 10 °C/min with 20 mL/min nitrogen gas flow. **Tab. S7**: Overview of the optical and thermal properties of all **BNCDI**s.

Spectroelectrochemical Experiments

Spectroelectrochemical experiments were performed in DCM with $TBAPF_6$ as electrolyte (0.2 M). The UV/NIR spectrometer was a Jasco V-770 instrument. As cell, an Omni Cell Spec with a platinum grid as the working electrode, a platinum wire as the counter electrode and SCE reference electrode was used. In addition, a Princeton applied Research Model 362 Scanning Potentiostat was used.

Due to the fact that phenyl and thienyl substituted **BNCDI**s showed reliable optoelectronical properties, we subjected **Tph-BNCDI**^{Dip} as model substrate to the experiments. Since these systems exhibited reversible reduction, we were interested in the formation of the **Tph-BNCDI**^{Dip--} and **Tph-BNCDI**^{Dip2-} species upon reduction (Scheme 3, Fig. S85).

Scheme 3: Proposed formation of Tph-BNCDI^{Dip+-} and Tph-BNCDI^{Dip2-} upon reduction.

Fig. S85: UV/Vis spectral change during spectroelectrochemical characterization of **Tph-BNCDI**^{Dip} (10⁻⁴ M) in DCM with 0.2 M TBAPF₆ at different potentials: neutral conditions (black), -0.5 V (turquoise). -0.7 V (green) and -1.2 V (red).

The process was irreversible.

After investigation of the **Tph-BNCDI**^{Dip} radical anion and dianion, we were interested in the spectroelectrochemical behavior of the **TPA-BNCDI**^{Dip} since cyclic voltammetric experiments revealed fully reversible oxidation and reduction process. Therefore, the reduction of **TPA-BNCDI**^{Dip} was conducted (Scheme 4, Fig. S86).

Scheme 4: Formation of TPA-BNCDI^{Dip-•} and TPA-BNCDI^{Dip2-} upon reduction.

The observed species differed from the reduced **Tph-BNCDI**^{Dip}. The process was irreversible.

Lewis Behavior

The treatment of **Tph-BNCDI**^{Dip} with boron tribromide and/or TBAF revealed that the fluoride **Tph-BNCDI**^{Dip} complex was less thermodynamically stable than the complex with BBr₃, which formed by the addition of boron tribromide; the reverse process was not possible (Fig. S87).

Fig. S87: Absorption spectra of Tph-BNCDI^{Dip} with TBAF and boron tribromide measured in DCM.

The interaction of **Tph-BNCDI**^{Dip} and **TPA-BNCDI**^{Dip} with fluoride or boron tribromide resulted in different absorption spectra. (Fig. S88), which were summarized below (Tab. S8).

Fig. S88: Absorption and emission spectra of TPA-BNCDI^{Dip} and Tph-BNCDI^{Dip} their interaction with TBAF measured in DCM.

	S _{0->} S ₁ (0-0)	S _{0->} S ₁ (0-1)	S _{0->} S ₁ (0-2)	S _{0->} S ₂ (0-0)	S _{0->} S ₂ (0-1)
Tph-BNCDI ^{Dip}	539 nm	502 nm	470 nm	427 nm	403 nm
+BBr ₃	656 nm	608 nm		497 nm	468 nm
+TBAF	791 nm	709 nm		468 nm	442 nm
TPA-BNCDI ^{Dip}	543 nm	506 nm	473 nm	428 nm	404 nm
+BBr₃	619 nm	573 nm	531 nm	493 nm	464 nm
+TBAF	805 nm	730 nm		472 nm	444 nm

Tab. S8: Overview of the formed TBAF and BBr ₃	species with either TPA-BNCDI^{Dip} or Tph-BNC	CDI ^{Dip} .
---	---	----------------------

Moreover, the interaction of the **BNCDI**s with fluoride and boron tribromide was analyzed in detail by titration experiments in combination with absorption spectroscopy.

Titration of the fluoride source with **Tph-BNCDI**^{Dip} and **TPA-BNCDI**^{Dip} revealed two-step processes (Fig. S89).

Fig. S89: Absorption and emission spectra of Tph-BNCDI^{Dip} (left) and TPA-BNCDI^{Dip} (right) their interaction with TBAF measured in DCM.

Upon addition of 0.5 equivalents of TBAF we clearly observed a decrease of the **BNCDI** bands indicating that this experiment is very sensitive towards its analyte and could be useful for sensoring processes. Upon adding more fluoride ions, we noted new absorption bands (600-820 nm) which might arise from the interaction of one fluoride anion with the **BNCDI**s to form the mono fluoride adduct. The limit of interaction was achieved if the system was treated with 11.0 equivalents of fluoride ions indicated by

the evolution of another band (600-900 nm) with two peaks (810 nm and 710 nm). There was no auxiliary effect of the triphenylamine moiety noticed in this experiment.

The addition of BBr₃ to **TPA-BNCDI**^{Dip} and **Tph-BNCDI**^{Dip} led to the formation of a blue species with redshifted absorption maxima ($\lambda_{max} = 619/656$ nm) and shoulder peaks (573/608 nm), displaying a vibronic fine structure (Fig. S90).

Fig. S90: Absorption spectra of TPA-BNCDI^{Dip}/Tph-BNCDI^{Dip} and their interaction with BBr₃.

In the higher energy absorbing region, two new signals (493/497 nm, 464/468 nm) were found with a similar vibronic appearance. Although the small absorption shifts of **TPA-BNCDI**^{Dip} compared to **Tph-BNCDI**^{Dip}, a strong influence of the triphenylamine moiety in this experiment could be excluded. In contrast to the fluoride adducts, the **BBr₃ BNCDI** adducts were not emissive.

Further detailed titrations with boron tribromide were conducted with **Tph-BNCDI**^{Dip} and **TPA-BNCDI**^{Dip} dissolved in DCM (Fig. S91).

Fig. S91: Absorption and emission spectra of **TPA-BNCDI**^{Dip} and **Tph-BNCDI**^{Dip} interaction with BBr₃. The titration was performed under nitrogen atmosphere and with anhydrous DCM.

The titration of **Tph-BNCDI**^{Dip} with BBr₃ gave similar results as for the **TPA-BNCDI**^{Dip}. Although the final species of the **TPA-BNCDI**^{Dip} was slightly hypsochromically shifted, there was no fundamental difference between the thienyl and triphenylamine derivative. However, the intermediary signal for the **Tph-BNCDI**^{Dip} (620 nm) was formed with fewer equivalents compared to the formation of the **TPA-BNCDI**^{Dip} species (590 nm). In general, this process was completely reversible by dilution or the addition of a protic solvent, e.g. methanol.

Solvent Interactions

Due to the fact that we could obtain dramatic changes in absorption spectra using strong Lewis base or acids we were interested in whether solvatochromism might also arise. Therefore, **Tph-BNCDI**^{Cy} was dissolved in various solvents where cyclohexane, DCM, THF, ethyl acetate, triethylamine and acetonitrile represent the best the high variety of possible interactions. For cyclohexane, DCM and THF slight changes of the absorption spectra were observed that rather could be related to their polarity than to their ability to possess free lone pair. However, we observed strong interactions with coordinating solvents like acetonitrile and TEA (Fig. S92).

Fig. S92: Interaction of Tph-BNCDI^{Cy} with different solvents.

The results of these experiments are summarized below (Tab. 9).

Tph-BNCDI ^{Cy}	S _{0->} S ₁ (0-0)	S _{0->} S ₁ (0-1)	S _{0->} S ₁ (0-2)	S _{0->} S ₂ (0-0)	S _{0->} S ₂ (0-1)
+DCM	539 nm	502 nm	470 nm	427 nm	402 nm
+Cyclohexane	526 nm	491 nm	461 nm	420 nm	397 nm
+THF	531 nm	495 nm	464 nm	423 nm	399 nm
+EA	549 nm	512 nm	475 nm	446 nm	
+TEA	628 nm	555 nm	530 nm	486 nm	456 nm
+ACN ¹	752 nm	686 nm			

Tab. S9:: Overview of the interaction of BNCDIs with common solvents.

¹Upon dissolving in ANC it appeared that two species were present at the same time (see below)

To further investigate the influence of the triphenylamine substituent on **BNCDI** and its optoelectronic properties upon interaction with different solvents, we repeated the experiments with **TPA-BNCDI**^{Cy} (Fig. S93).

Fig. S93: Interaction of TPA-BNCDI^{Cy} with different solvents.

The results of these experiments are summarized below (Tab. S10).

TPA-BNCDI ^{Cy}	S _{0->} S ₁ (0-0)	S _{0->} S ₁ (0-1)	S _{0->} S ₁ (0-2)	S _{0->} S ₂ (0-0)	S _{0->} S ₂ (0-1)
+DCM	543 nm	506 nm	473 nm	428 nm	404 nm
+Cyclohexane	540 nm	503 nm	473 nm	426 nm	402 nm
+THF	535 nm	500 nm	467 nm	423 nm	400 nm
+EA	549 nm	514 nm	473 nm	447 nm	427 nm
+TEA	629 nm	563 nm	522 nm	490 nm	465 nm
+ACN	759 nm	690 nm			

Tab. S10: Overview of the interaction of BNCDIs with common solvents.

¹Upon dissolving in ACN it appeared that two species were present at the same time (see below)

Since complexation was possible with weak or moderate Lewis bases, e.g. ethyl acetate, THF, tertiary amines or acetonitrile, we concluded that the BN unit showed a weak interaction of the empty boron orbital with the oxygen/nitrogen lone pair of the Lewis base. In most cases, the **BNCDI** species retained the characteristically structured vibronic absorption bands. The observed effect was not limited to TPA-substituted **TPA-BNCDI**^{Cy}, as the thienyl-substituted **Tph-BNCDI**^{Dip} exhibited the same behavior. Therefore, an additional effect of the triphenylamine's lone pair was excluded. These findings were especially interesting, since all carbon rylene diimides are only weakly solvatochromic.¹⁰

Rehm-Weller Equation

To support the intramolecular PeT theory, the energy change for a PeT process was calculated by the Rehm-Weller equation ¹¹ in its simplified version (Eq. 1).¹²⁻¹⁵

$$\Delta G_{PET} = e(E_{(D+\cdot/D)} - E_{(A/A-\cdot)}) - E_{00} + \Delta G_{solv}^{0}$$
(Eq. 1)

Here, the E_{00} represents the intersection of absorption and emission, and ΔG_{solv}^0 is a correction term which includes the coulomb potential for the respective radical ionic species in the given solvent.

Whereas the ΔG_{solv}^0 is defined as:

$$\Delta G^{0}_{solv} = \frac{e^2}{4\pi\varepsilon_0\varepsilon_s r_{DA}} \,(\text{Eq. 2})$$

With the distance of TPA and BNCDI (r_{DA} = 10.5 Å), the following results were obtained.

Tab. S11:: Overview of the parameters used in the Rehm-Weller equation in DCM (ϵ_s = 8.93).

	$E_{(D+\cdot/D)}/V$	$E_{(A/A-\cdot)}/V$	$E_{00} / {\rm eV}$	$\Delta G_{solv}^0 / eV$	ΔG_{PET} / eV
TPA-BNCDI ^{Cy}	0.54	-1.21	2.21	0.15	-0.31
TPA-BNCDI ^{Dip}	0.60	-1.15	2.19	0.15	-0.29

The ΔG_{PET} of **TPA-BNCDI**^{Cy} and for **TPA-BNCDI**^{Dip} in DCM was -0.31/-0.29 eV or -6.69/-7.15 kcal/mol. Therefore, the process was exergonic and feasible. This was in accordance with literature where ΔG_{PET} = -0.2 eV to -0.3 eV is described as barrier for PeT processes.¹⁶

In cyclohexane the redox potentials require additionally the Born correction:

$$\Delta G_{PeT} = e \left(E_{(D+/D)} - E_{(A/A-D)} \right) + \Delta G_{redox} - E_{00} + \Delta G_{solv}^{0}$$
(Eq. 3)

with

$$\Delta G_{redox} = \frac{e^2}{8\pi\varepsilon_0 r_{DA}} * \left(\frac{1}{\varepsilon_{ref}} - \frac{1}{\varepsilon_s}\right) (\text{Eq. 4})$$

Tab. S12:: Overview of the parameters used in the Rehm-Welle	er equation in cyclohexane (ε_s = 2.02).
--	---

	$E_{(D+\cdot/D)}$ / eV	$E_{(A/A-\cdot)}$	ΔG_{redox}	$E_{00} / {\rm eV}$	ΔG_{solv}^0	ΔG_{PeT}
TPA-BNCDI ^{Cy}	0.54	-1.21	-0.260	2.30	0.68	0.39
TPA-BNCDI ^{Dip}	0.60	-1.15	-0.262	2.26	0.68	0.43

The ΔG_{PeT} of **TPA-BNCDI**^{Cy} and for **TPA-BNCDI**^{Dip} in cyclohexane was 0.39/0.43 eV or 8.99/9.92 kcal/mol. The process was endergonic and therefore not feasible.

Computational Details and TICT search

To perform the calculations, we used simplified structures, in which the long hexyl chains as well as the R group were replaced by methyl groups for the sake of computational efficiency. This is justified by the remarkably similar experimental properties of dyes in which cyclohexyl or disopropylphenyl groups are used. To model the spectral features, we used a computational method relying on a hybrid protocol, in which the total and transition energies are determined with second-order Coupled-Cluster calculations (CC2),¹⁷ whereas the geometries, and vibrations are computed at the Time-Dependent Density Functional Theory (TD-DFT) level,¹⁸ and environmental effects accounted for by using the wellknown Polarizable Continuum Model (PCM).¹⁹ All CC2 calculations were achieved with Turbomole²⁰ applying the resolution-of-identity approach and selecting the *def2*-SVPD atomic basis set. All (TD-)DFT calculations but the constrained ones (see below) were performed using the Gaussian16.A03 program.²¹ For the Gaussian calculations, we used tightened self-consistent field (10⁻¹⁰ a.u.) and geometry optimization (10⁻⁵ a.u.) convergence thresholds, and a large DFT integration grid (so-called sperfine grid,). These (TD-)DFT calculations relied on the CAM-B3LYP range-separated hybrid functional.²² Following the basis set combination approach proposed elsewhere,²³ we selected the 6-31G(d) atomic basis set for determining the geometrical and vibrational parameters whereas the transition energies were computed with 6-31+G(d). The nature of the ground-state stationary points was confirmed by analytical Hessian calculations that returned 0 (minima) imaginary vibrational modes. Environmental effects on the transition energies were accounted for using a LR+cLR²⁴ model in its non-equilibrium limit for both absorption and emission. Excited-states were represented using density difference plots, in which the excited-state density was determined at the TD-DFT level. In these plots blue and red regions respectively indicate decrease and increase of electron density upon photon absorption. For evaluation the possibility of PeT, we used constrained DFT,²⁵ as implemented in Q-Chem 5.3.²⁶ These calculations were performed with the CAM-B3LYP functional and the 6-31G(d) basis set. The CPCM solvent model was used in combination with UFF radii to model solvent effects. For comparison, the energy of the lowest bright excited-state was optimized at the same level of theory with the same code using "standard" TD-DFT.

To exclude a TICT-like transition, we have scanned the dihedral angle between the CDI core and the Ph (the Ph and the TPA moiety) ring from 15° to 90° (0° to 90°) and computed the excited-state energies at the LR+cLR-PCM/TD-CAM-B3LYP/6-31+G(d) level in both solvents. As can be seen in Fig. S94, both graphs show only one minimum in both solvents, indicative that TICT likely does not play a role here. This conclusion is well in line with their limited role in the EDD plot (Fig. 6 in the manuscript).

Literature

- 1. J. Buchenska, J. Appl. Polym. Sci., **2001**, 80, 1914-1919.
- 2. X. Mo, H.-Z. Chen, M.-M. Shi, M. Wang, Chem. Phys. Lett., 2006, 417, 457-460.
- 3. R. K. Gupta, A. S. Achalkumar, *J. Org. Chem.*, **2018**, *83*, 6290-6300.
- 4. S. Sengupta, R. K. Dubey, R. W. Hoek, S. P. van Eeden, D. D. Gunbas, F. C. Grozema, E. J. Sudholter, W. F. Jager, *J. Org. Chem.*, **2014**, *79*, 6655-6662.
- 5. F. Wurthner, V. Stepanenko, Z. Chen, C. R. Saha-Moller, N. Kocher, D. Stalke, *J. Org. Chem.*, **2004**, *69*, 7933-7939.
- 6. A. Lik, L. Fritze, L. Muller, H. Helten, J. Am. Chem. Soc., **2017**, 139, 5692-5695.
- 7. B. Wrackmeyer, Z. Naturforsch. B., **2015**, 70, 421-424.
- 8. Z. Zhang, R. M. Edkins, J. Nitsch, K. Fucke, A. Steffen, L. E. Longobardi, D. W. Stephan, C. Lambert, T. B. Marder, *Chem. Sci.*, **2015**, *6*, 308-321.
- 9. J. L. Bredas, R. Silbey, D. S. Boudreaux, R. R. Chance, J. Am. Chem. Soc., **1983**, 105, 6555-6559.
- 10. H. Langhals, *Description of properties of binary solvent mixtures*, in *Similarity models in organic chemistry, biochemistry and related fields*, eds. R. I. Zalewski, T. M. Krygowski and J. Shorter, Elsevier, Amsterdam u.a., **1991**, vol. 42, 283-342.
- 11. D. Rehm, A. Weller, Z. Phys. Chem., **1970**, 69, 183-200.
- 12. J. R. Lakowicz, *Principles of Fluorescence Spectroscopy*, Springer US, Boston, 3rd edn., **2006**.
- 13. G. J. Kavarnos, *Fundamental concepts of photoinduced electron transfer*, Springer Berlin Heidelberg, Berlin, Heidelberg, **1990**.
- 14. D. Rehm, A. Weller, *Ber. Bunsenges. Phys. Chem.*, **1969**, *73*, 834-839.
- 15. D. Rehm, A. Weller, *Isr. J. Chem.*, **1970**, *8*, 259-271.
- 16. L. Eberson, *Electron Transfer Reactions in Organic Chemistry*, Springer-Verlag Berlin Heidelberg, **1987**.
- 17. O. Christiansen, H. Koch, P. Jørgensen, *Chem. Phys. Lett.*, **1995**, *243*, 409-418.
- 18. C. Adamo, D. Jacquemin, Chem. Soc. Rev., 2013, 42, 845-856.
- 19. J. Tomasi, B. Mennucci, R. Cammi, *Chem. Rev.*, **2005**, *105*, 2999-3093.
- 20. TURBOMOLE V6.2 2010, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.,
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Rev. B.01, **2016**.
- 22. T. Yanai, D. P. Tew, N. C. Handy, *Chem. Phys. Lett.*, **2004**, *393*, 51-57.
- 23. D. Jacquemin, A. Planchat, C. Adamo, B. Mennucci, J. Chem. Theory Comput., **2012**, *8*, 2359-2372.
- 24. P. M. Verite, C. A. Guido, D. Jacquemin, *Phys. Chem. Chem. Phys.*, **2019**, *21*, 2307-2317.
- 25. Q. Wu, T. Van Voorhis, *Phys. Rev. A*, **2005**, *72*.
- 26. A. I. Krylov, P. M. W. Gill, *Wiley Interdiscip. Rev. Comput. Mol. Sci.*, **2013**, *3*, 317-326.