Red and Green-emitting Biocompatible Carbon Quantum Dots for

Efficient Tandem Luminescent Solar Concentrators

Yi Han^b, Xiujian Zhao^a, Alberto Vomiero^{c,d,*}, Xiao Gong^{a,*}, Haiguang Zhao^{e,*}

^aState Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China

^bSchool of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, P.R. China

^cDepartment of Molecular Science and Nano Systems, Ca' Foscari University of Venice Via Torino 155, 30172 Venezia Mestre, Italy

^dDivision of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87 Luleå, Sweden

^eCollege of Physics & State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, P.R. China

*Corresponding authors. Email: alberto.vomiero@unive.it; xgong@whut.edu.cn; hgzhao@qdu.edu.cn.

Simulation:

The external optical efficiency of the LSCs can be expressed as:¹

$$\eta_{opt} = \eta_{Abs} \cdot \eta_{internal} \tag{1}$$

 η_{Abs} can be calculated as:¹

$$\eta_{Abs} = (1-R) \frac{\int_{0}^{\infty} I_{in}(\lambda)(1-e^{-\alpha(\lambda)d})d\lambda}{\int_{0}^{\infty} I_{in}(\lambda)d\lambda}$$
(2)

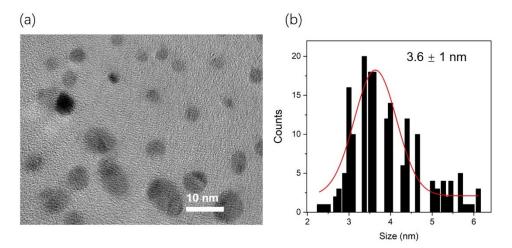
In which α is the absorption coefficient [calculated as $\alpha = \ln (10) \frac{1}{d}$, where *d* is the effective length and *A* the absorption of the LSC], I_{in} is the Sun irradiance.

R can be calculated as follows:¹

$$R = \frac{(n_{glass} - n)^2}{(n_{glass} + n)^2}$$
(3)

R at the interface of glass and air is 4% as the n_{glass} is 1.50 and n_{air} is 1. R at the interface of glass and the mixture of the glass and the C-dots/PVP film is in the range of 0.36-0.44%, depending on the refractive index of the mixture.

A spectrally averaged internal efficiency $(\eta_{internal})$ over the PL of the C-dots was calculated as:¹


$$\eta_{internal} = \frac{\int_{0}^{\infty} \frac{\eta_{QY} P_{TIR}}{1 + \beta \alpha(\lambda) L_{lsc} (1 - \eta_{QY} P_{TIR})} S_{PL}(\lambda) d\lambda}{\int_{0}^{\infty} S_{PL}(\lambda) d\lambda}$$

in which $S_{PL}(\lambda)$ is the PL spectrum; β is a numerical value fixed to 1.4 and L_{lsc} is the length of the LSC. η_{QY} is the quantum yield of the C-dots/PVP film.

Assuming an isotropic emission, P_{TIR} is defined by the escape cone identified by the critical angle θ of the solution/glass interface:¹

$$P_{TIR} = \sqrt{1 - \left(\frac{n_{air}}{n}\right)^2} \tag{5}$$

Figures

Figure 1. TEM image (a) and size distribution (b) of C-dots synthesized at 160 °C using CA/urea as precursors and DMF as solvent.

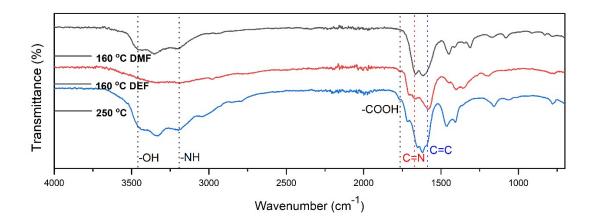


Figure S2. FI-IR spectra of the synthesized C-dots.

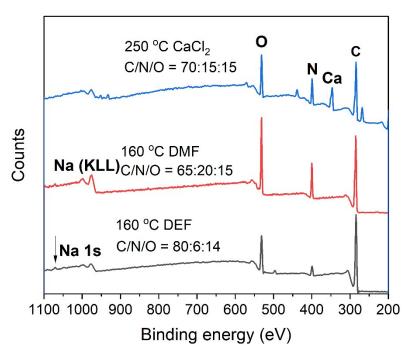
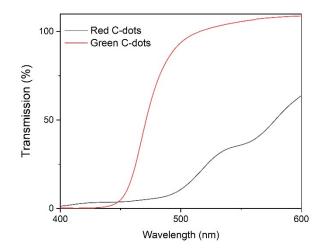



Figure S3. XPS spectra of the synthesized C-dots.

Figure S4. Transmission of the C-dots based LSCs in the wavelength range of 400-600 nm.

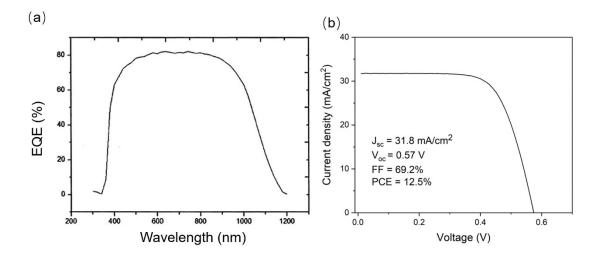
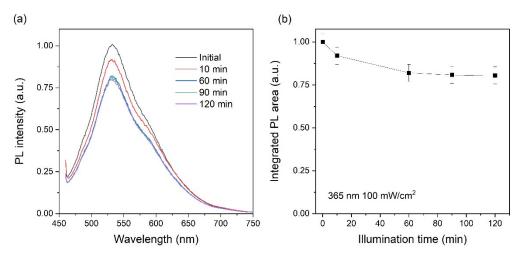
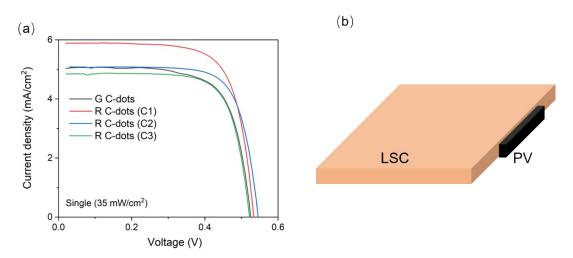




Figure S5. (a) External quantum efficiency (EQE) and (b) J-V response of the commercial solar cell used in this work upon simulated sunlight (100 mW/cm^2).

Figure S6. (a) PL intensity and (b) integrated PL area of the LSC based on red C-dots (0.5 mg/cm³) as a function of illumination time. The excitation wavelength is 430 nm. The LSC was upon 365 UV lamp (100 mW/cm²).

Figure S7. (a) J-V response of silicon PV attached on one edge of the LSC (as shown in Fig. S7b) under the natural sunlight (35 mW/cm^2). (d) tandem LSC (70 mW/cm^2).

Reference

1. V. I. Klimov, T. A. Baker, J. Lim, K. A. Velizhanin and H. McDaniel, ACS *Photonics*, 2016, **3**, 1138.